Factors Impacting E-Commerce Performance via Big Data Analytics in Hangzhou

Authors

  • Sheng Qi

DOI:

https://doi.org/10.14456/au-ejir.2025.11
CITATION
DOI: 10.14456/au-ejir.2025.11
Published: 2025-04-25

Keywords:

Big Data Analytics, Global Sourcing, Satisfaction, Business Value, Firm Performance

Abstract

Purpose: This study investigates the factors influencing firm performance (FP) through big data analytics (BDA) in E-commerce companies. Specifically, it examines the effects of integration (INT), global sourcing (GS), competitive advantage (CA), business value (BVAL), and satisfaction (SAT) on FP, along with the effect of INT on GS and BVAL on SAT. Research design, data and methodology: Based on the resource-based view (RBV), dynamic capability view (DCV), and information systems (IS) success model, a quantitative approach was adopted. Data were collected from 500 employees across eight types of E-commerce companies in Hangzhou using stratified random sampling. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) were used to test hypotheses and analyze relationships among variables. Results: BVAL has the strongest effect on SAT, INT significantly enhances GS, but its direct effect on FP is unsupported. GS, BVAL, CA, and SAT significantly impact FP. This study highlights the strategic value of BDA in driving performance outcomes. Conclusions: This offers actionable insights for E-commerce firms to strengthen integration, optimize sourcing, create business value, and enhance satisfaction. By focusing on these areas, businesses can better navigate the global digital marketplace, build sustainable competitive advantages, and improve overall firm performance.

Author Biography

Sheng Qi

Logistics Service Center, Zhejiang Business College, China.

References

Alkire, L., Liu, Y., & Wang, Y. (2023). Data-driven global sourcing: Enhancing performance through digital supply chain integration. Journal of Purchasing and Supply Management, 29(2), 100812. https://doi.org/10.1016/j.pursup.2023.100812

Arbuckle, L. J. (2008). AMOS 17.0 User’s Guide. IBM SPSS.

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120.

https://doi.org/10.1177/014920639101700108

Barrett, P. (2007). Structural equation modeling: Adjudging model fit. Personality and Individual Differences, 42(5), 815-824. https://doi.org/10.1016/j.paid.2006.09.018

Behl, A. (2022). Building sustainable competitive advantage through big data analytics capability. Journal of Strategic Marketing, 30(3), 267-285. https://doi.org/10.1080/0965254X.2020.1814772

Bresciani, S., Ciampi, F., Meli, F., & Ferraris, A. (2021). Using big data for co-innovation processes: Mapping the field of data-driven innovation, proposing theoretical developments and providing a research agenda. International Journal of Information Management, 60, 102347. https://doi.org/10.1016/j.ijinfomgt.2021.102347

Cagliano, A. C., De Marco, A., Rafele, C., & Arese, M. (2012). A decision-making approach for investigating the potential effects of near sourcing on supply chain. Strategic Outsourcing: An International Journal, 5(2), 100-120.

https://doi.org/10.1108/17538291211257534

Chong, A. Y. L. (2013). Understanding mobile commerce continuance intentions: An empirical analysis of Chinese consumers. Journal of Computer Information Systems, 53(4), 22-30. https://doi.org/10.1080/08874417.2013.11645653

Deb, M., Roy, S. K., & Jayawardhena, C. (2023). Workplace satisfaction and firm performance: A multi-perspective view. Journal of Business Research, 159, 113705.

https://doi.org/10.1016/j.jbusres.2023.113705

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748

Fahy, J. (2000). The resource‐based view of the firm: Some stumbling‐blocks on the road to understanding sustainable competitive advantage. Journal of European Industrial Training, 24(2/3/4), 94-104.

https://doi.org/10.1108/03090590010321061

Flynn, B. B., Huo, B., & Zhao, X. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28, 58-71. https://doi.org/10.1016/j.jom.2009.06.001

Foerstl, K., Hartmann, E., Wynstra, F., & Moser, R. (2013). Cross-functional integration and functional coordination in purchasing and supply management. International Journal of Operations and Production Management, 33(6), 689-721. https://doi.org/10.1108/IJOPM-09-2011-0349

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Frohlich, M. T., & Westbrook, R. (2001). Arcs of integration: An international study of supply chain strategies. Journal of Operations Management, 19(2), 185-200. https://doi.org/10.1016/S0272-6963(00)00055-3

Galbreath, J., Lucianetti, L., Thomas, B., & Tisch, D. (2020). Entrepreneurial orientation and firm performance in Italian firms: The moderating role of competitive strategy. International Journal of Entrepreneurial Behavior and Research, 26(4), 629-646. https://doi.org/10.1108/IJEBR-05-2019-0272

Ghasemaghaei, M. (2022). Does data quality matter? An empirical investigation of big data analytics success and business value. Decision Support Systems, 157, 113738. https://doi.org/10.1016/j.dss.2021.113738

Gregor, S., Martin, M., Fernandez, W., Stern, S., & Vitale, M. (2006). The transformational dimension in the realization of business value from information technology. The Journal of Strategic Information Systems, 15(3), 249-270.

https://doi.org/10.1016/j.jsis.2006.04.001

Gualandris, J., Golini, R., & Kalchschmidt, M. (2014). Do supply management and global sourcing matter for firm sustainability performance? An international study. SCM: An International Journal, 19(3), 258-274. https://doi.org/10.1108/SCM-12-2013-0446

Gupta, S., Kar, A. K., Baabdullah, A., & Al-Khowaiter, W. A. (2018). Big data with cognitive computing: A review for the future. International Journal of Information Management, 42, 78-89. https://doi.org/10.1016/j.ijinfomgt.2018.06.005

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2010). Multivariate data analysis (7th ed.). Prentice Hall.

Hair, J. F., Black, W., Babin, B., Anderson, R., & Tatham, R. (2006). Multivariate data analysis (6th ed.). Pearson Education.

Ismail, A. I., Rose, R. C., Abdullah, H., & Uli, J. (2010). The relationship between organisational competitive advantage and performance moderated by the age and size of firms. Asian Academy of Management Journal, 15(2), 157-173.

Jia, F., Orzes, G., Sartor, M., & Nassimbeni, G. (2017). Global sourcing strategy and structure: Towards a conceptual framework. International Journal of Operations & Production Management, 37(7), 840-864. https://doi.org/10.1108/IJOPM-10-2015-0620

Ji-Fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011-5026. https://doi.org/10.1080/00207543.2016.1154209

Kahn, K. B., & Mentzer, J. T. (1996). Logistics and interdepartmental integration. International Journal of Physical Distribution and Logistics Management, 26(8), 6-14. https://doi.org/10.1108/09600039610126578

Kalinić, Z., Marinković, V., Djordjević, A., & Liebana-Cabanillas, F. (2019). What drives customer satisfaction and word of mouth in mobile commerce services? A UTAUT2-based analytical approach. Journal of Enterprise Information Management, 33(1), 71-94. https://doi.org/10.1108/JEIM-01-2019-0015

Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M., & Gani, A. (2014). Big data: Survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014(1), 712826.

https://doi.org/10.1155/2014/712826

Khan, R. A., & Qudrat-Ullah, H. (2021). Adoption of LMS in higher educational institutions of the Middle East. Springer.

Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press.

Kong, X., & Liu, H. (2023). Digital satisfaction and organizational agility: Evidence from technology-intensive firms. Information & Management, 60(4), 103695. https://doi.org/10.1016/j.im.2023.103695

Langenberg, K. U., Seifert, R. W., & Tancrez, J. S. (2012). Aligning supply chain portfolios with product portfolios. International Journal of Production Economics, 35(1), 500-513. https://doi.org/10.1016/j.ijpe.2012.01.013

Lee, H., & Yang, Y. (2023). Data-driven dynamic capabilities and firm performance in E-commerce. Information & Management, 60(5), 103717. https://doi.org/10.1016/j.im.2023.103717

Li, M., & Liu, Y. (2023). How big data analytics create business value: The mediating role of decision-making quality and firm agility. Information & Management, 60(1), 103670. https://doi.org/10.1016/j.im.2022.103670

Lin, N., Tan, H., & Chen, S. (2017). Global offshoring portfolio diversity and performance implications. International Journal of Physical Distribution & Logistics Management, 47(2/3), 114-136. https://doi.org/10.1108/IJPDLM-03-2016-0080

Lu, Y., Wu, Y., & Chang, C. (2021). Work-life balance and job satisfaction in digital workplaces. Sustainability, 13(3), 1158. https://doi.org/10.3390/su13031158

Luo, X., & Homburg, C. (2008). Satisfaction, complaint, and the stock value gap. Journal of Marketing, 72(4), 29-43.

https://doi.org/10.1509/jmkg.72.4.29

Marinkovic, V., & Kalinic, Z. (2017). Antecedents of customer satisfaction in mobile commerce: Exploring the moderating effect of customization. Online Information Review, 41(2), 138-154. https://doi.org/10.1108/OIR-11-2015-0366

McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.

Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. A. (2017). A big data analytics method for tourist behaviour analysis. Information & Management, 54(6), 771-785. https://doi.org/10.1016/j.im.2016.11.011

Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information and Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004

Potjanajaruwit, P. (2018). Competitive advantage effects on firm performance: A case study of startups in Thailand. Journal of International Studies, 10(1), 104-111. https://doi.org/10.14254/2071-8330.2018/11-1/8

Pratono, A. H. (2024). The role of digital capabilities in developing competitive advantage: Evidence from emerging markets. Technological Forecasting and Social Change, 198, 122933. https://doi.org/10.1016/j.techfore.2023.122933

Razaghi, S., & Shokouhyar, S. (2021). Impacts of big data analytics management capabilities and supply chain integration on global sourcing: A survey on firm performance. The Bottom Line, 34(2), 198-223. https://doi.org/10.1108/BL-12-2020-0080

Sarmento, R. P., & Costa, V. (2019). Confirmatory factor analysis—A case study. arXiv preprint arXiv:1905.05598. https://doi.org/10.48550/arXiv.1905.05598

Sica, C., & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M. C. Gullotta (Ed.), Leading-edge psychological tests and testing research (pp. 27-50). Nova Science Publishers.

Spreng, R. A., Mackenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. The Journal of Marketing, 60(3), 15-32. https://doi.org/10.1177/002224299606000302

Stank, T. P., Keller, S. B., & Closs, D. J. (2001). Performance benefits of supply chain logistical integration. Transportation Journal, 41(2/3), 32-46.

Swink, M., Narasimhan, R., & Wang, C. (2007). Managing beyond the factory walls: Effects of four types of strategic integration on manufacturing plant performance. Journal of Operations Management, 25(1), 148-164.

https://doi.org/10.1016/j.jom.2006.02.006

Teece, D., & Pisano, G. (1994). The dynamic capabilities of firms: An introduction. Industrial and Corporate Change, 3(3), 537-556. https://doi.org/10.1093/icc/3.3.537

Vitari, C., & Raguseo, E. (2020). Big data analytics business value and firm performance: Linking with environmental context. International Journal of Production Research, 58(18), 5456-5476. https://doi.org/10.1080/00207543.2020.1730463

Wamba, S. F., Akter, S., Trinchera, L., & Bourmont, M. D. (2018). Turning information quality into firm performance in the big data economy. Management Decision, 57(8), 1756-1783. https://doi.org/10.1108/MD-08-2018-0830

Wang, L., Chen, J., & Zhao, Y. (2023). Digital integration capabilities and supply chain resilience: Evidence from Chinese E-commerce firms. Information & Management, 60(3), 103700. https://doi.org/10.1016/j.im.2023.103700

Webster, P. B. (1966). Etymology in Webster's Third New International Dictionary. Word, 22(1-3), 7-82.

Wernerfelt, B. (1984). A resource‐based view of the firm. Strategic Management Journal, 5(2), 171-180.

https://doi.org/10.1002/smj.4250050207

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102. https://doi.org/10.1287/isre.1050.0042

Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729. https://doi.org/10.1016/j.im.2004.07.001

Yu, D., & Fang, A. (2023). The knowledge trajectory and structure of the supply chain integration: A main path and cluster analysis. Journal of Enterprise Information Management, 36(4), 1056-1079. https://doi.org/10.1108/JEIM-09-2022-0410

Zhao, Y., & Wang, L. (2022). Strategic value of big data analytics in digital transformation: Evidence from Chinese E-commerce firms. Technological Forecasting and Social Change, 180, 121670.https://doi.org/10.1016/j.techfore.2022.121670

Zuboff, S. (1988). In the age of the smart machine: The future of work and power. Basic Books.

Downloads

Published

2025-04-25

How to Cite

Qi, S. (2025). Factors Impacting E-Commerce Performance via Big Data Analytics in Hangzhou. Journal of Interdisciplinary Research (ISSN: 2408-1906), 10(1), 102-112. https://doi.org/10.14456/au-ejir.2025.11