Factors Impacting E-shopping Intention Among Undergraduate Students in a Public University in China

Authors

  • Lu Xiaoju

Keywords:

Perceived Value, Trust, Usefulness, Attitude, E-Shopping Intention

Abstract

Purpose: In developed countries, there has been extensive research on the individual intentions and behaviors of e-shopping. This study explores the impact of college undergraduate students' e-shopping usefulness, attitude, and intention in Guangxi University of Science and Technology (GXUST), China. The conceptual framework suggested a causal relationship between perceived value, trust, ease of use, usefulness, customer service, attitude, and e-shopping intention. Research design, data, and methodology: This study adopted a quantitative method (n=500), distributing questionnaires to undergraduate students in GXUST. The nonprobability sampling contains judgmental, quota, and convenience sampling in distributing online questionnaires to collect the data. Confirmatory factor analysis and structural equation modeling were used to analyze the collected data and validate the constructs' model fit, reliability, and validity. Result: Seven hypotheses have been proven to complete the survey purpose. The results showed that perceived value, trust, ease of use, and usefulness significantly impact attitudes toward e-shopping. Ease of use has a significant impact on usefulness. Attitude presented the strongest impact on e-shopping intention, followed by customer service.  Conclusion: Online operators should optimize the e-shopping environment, create more convenient conditions, and improve the effectiveness and satisfaction of e-shopping to promote the rapid development of e-commerce.

Author Biography

Lu Xiaoju

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, China.

References

Abbad, M., Abbad, R., & Saleh, M. (2011). Limitations of e-commerce in developing countries: Jordan case, Education, Business and Society. Contemporary Middle Eastern Issues, 4(4), 280-291. https://doi.org/10.1108/17537981111190060

Ajzen, I. (1985). From Intentions to Action: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action-Control: From Cognition to Behavior (pp. 11-39). Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-69746-3_2

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-t

Akroush, M., & Al-Debei, M. (2015). An integrated model of factors affecting consumer attitudes towards online shopping. Business Process Management Journal, 21(6), 1353-1376. https://doi.org/10.1108/bpmj-02-2015-0022

Alkailani, M., & Kumar, R. (2011). Investigating Uncertainty Avoidance and Perceived Risk for Impacting Internet Buying: A Study in Three National Cultures. International Journal of Business and Management, 6(5), 76-92. https://doi.org/10.5539/ijbm.v6n5p76

Anesbury, Z., Nenycz‐Thiel, M., Dawes, J., & Kennedy, R. (2016). How do shoppers behave online? An observational study of online grocery shopping. Journal of Consumer Behavior, 15(3), 261-270. https://doi.org/10.1002/cb.1566

Armitage, C., Norman, P., Alganem, S., & Conner, M. (2015). Expectations Are More Predictive of Behavior than Behavioral Intentions: Evidence from Two Prospective Studies. Annals of behavioral medicine a publication of the Society of Behavioral Medicine, 49(2), 239-246.

https://doi.org/10.1007/s12160-014-9653-4

Bandara, R., Fernando, M., & Akter, S. (2020). Privacy concerns in e-commerce: a taxonomy and a future research agenda. Electron. Mark, 30(2), 629-647. https://doi.org/10.1007/s12525-019-00375-6

Beneke, J., Cumming, G., Stevens, A., & Versfeld, M. (2010). Influences on attitude toward mobile text message advertisements: an investigation of South African youth. International Journal of Mobile Marketing, 5(1), 77-97.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238. https://doi.org/https://doi.org/10.1037/0033-2909.107.2.238

Bigné‐Alcañiz, E., Currás‐Pérez, R., & Sánchez‐García, I. (2009). Brand credibility in cause‐related marketing: the moderating role of consumer values. Journal of Product & Brand Management, 18(6), 437-447. https://doi.org/10.1108/10610420910989758

Cao, Y., Ajjan, H., & Hong, P. (2018). Post-purchase shipping and customer service experiences in online shopping and their impact on customer satisfaction: an empirical study with comparison. Asia Pacific Journal of Marketing and Logistics, 30(2), 400-416. https://doi.org/10.1108/apjml-04-2017-0071

Chang, D. S., & Wang, T. H. (2012). Consumer preferences for service recovery options after delivery delay when shopping online. Social Behavior and Personality: An International Journal, 40(6), 1033-1043. https://doi.org/10.2224/sbp.2012.40.6.1033

Chen, M.-F., & Tung, P.-J. (2014). Developing an extended Theory of Planned Behavior model to predict consumers’ intention to visit green hotels. International Journal of Hospitality Management, 36, 221-230. https://doi.org/10.1016/j.ijhm.2013.09.006

Chidambaram, L. (2001). Why e-service journal?. E-Service Journal, 1(1), 1-5.

Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295-336). Lawrence Erlbaum Associates Publishers.

Cho, Y. C., & Sagynov, E. (2015). Exploring factors that affect usefulness, ease of use, trust, and purchase intention in the online environment. International Journal of Management & Information Systems, 19(1), 21-36. https://doi.org/10.19030/ijmis.v19i1.9086

Chuah, S., Rauschnabel, P., Krey, N., Nguyen, B., Ramayah, T., & Lade, S. (2016). Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276-284. https://doi.org/10.1016/j.chb.2016.07.047

Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13, 319-340. https://doi.org/10.2307/249008

Davis, F. D. (1993). User Acceptance of Information Technology: System Characteristics, User Perceptions and Behavioral Impacts. International Journal of Man-Machine Studies, 38, 475-487. https://doi.org/10.1006/imms.1993.1022

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982

Dayal, S., Landesberg, H., & Zeisser, M. (1999). How to build trust online. Marketing Management, 8(3), 64-69. https://doi.org/10.1007/978-3-7091-6088-6_5

Edmunds, R., Thorpe, M., & Conole, G. (2010). Student attitudes towards and use of ICT in course study, work, and social activity: A technology acceptance model approach. British Journal of Educational Technology, 43(1), 71-84. https://doi.org/10.1111/j.1467-8535.2010.01142.x

Faqih, K. M. S. (2011). Integrating perceived risk and trust with technology acceptance model: an empirical assessment of customers’ acceptance of online shopping in Jordan (1st ed.). Research and Innovation in Information Systems (ICRIIS), International Conference on IEEE, 1-5.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27(1), 51-90. https://doi.org/10.2307/30036519

George, J. (2002). Influences on the intent to make Internet purchases. Internet Research, 12(2), 165-180. https://doi.org/10.1108/10662240210422521

Gunawan, F. (2011). Pengaruh Persepsi Merek dan Kepercayaan Konsumen terhadap Brand Switching atas Produk Smartphone (Blackberry) pada Mahasiswa UNP. Padang

Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. https://doi.org/10.1016/j.jbusres.2008.06.016

Hansen, T. (2006). Determinants of consumers’ repeat online buying of groceries. International Review of Retail Distribution and Consumer Research, 16(1), 93-114.

https://doi.org/10.1080/09593960500453617

Harris, L. C., & Goode, M. M. H. (2004). The four levels of loyalty and the pivotal role of trust: a study of online service dynamics. Journal of Retailing, 80, 139-158.

https://doi.org/10.1016/j.jretai.2004.04.002

Hsu, H.-Y., Kwok, O., Lin, J. H., & Acosta, S. (2015). Detecting mis specified multilevel structural equation models with common fit indices: a monte Carlo study. Multivariate Behavioral Research, 50(2), 197-215. https://doi.org/10.1080/00273171.2014.977429

Hsu, P., Lander, E., & Zhang, F. (2014). Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 157(6), 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010

Hung, S. Y., Chen, C. C., & Huang, N. H. (2014). An integrative approach to understanding customer satisfaction with e-service of online stores. Journal of Electronic Commerce Research, 15(1), 40-57.

Jin, Y., & Oriaku, N. (2013). E-service flexibility: Meeting new customer demands online. Management Research Review, 36(11), 1123-1136. https://doi.org/10.1108/mrr-08-2012-0189

Kacen, J. J., Hess, J. C., & Walker, D. (2012). Spontaneous selection: the influence of product and retailing factors on consumer impulse purchases. Journal of Retailing and Consumer Services, 19(6), 578-588. https://doi.org/10.1016/j.jretconser.2012.07.003

KamalulAriffin, S., Mohan, T., & Goh, Y. N. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of Research in Interactive Marketing, 12(3), 309-327. https://doi.org/10.1108/jrim-11-2017-0100

Kang, H., Hahn, M., Fortin, D. R., Hyun, Y. J., & Seckler, M., Heinz, S., Forde, S., Tuch, A. N., & Opwis, K. (2015). Trust and distrust on the web: user experiences and website characteristics. Computers in Human Behavior, 45, 39-50. https://doi.org/10.1016/j.chb.2014.11.064

Khan, R. A., & Qudrat-Ullah, H. (2021). Adoption of LMS in higher educational institutions of the Middle East (1st ed.). Springer.

Kim, J. H., Kim, M. S., & Nam, Y. (2010). An Analysis of Self-Construal’s, Motivations, Facebook Use, and User Satisfaction. International Journal of Human-Computer Interaction, 26, 1077-1099. http://dx.doi.org/10.1080/10447318.2010.516726

Kotler, P., & Armstrong, G. (2016). Principles of Marketing (16th ed.). Pearson.

Kuan, H. H., & Bock, G. W. (2007). Trust transference in brick and click retailers: an investigation of the before-online-visit phase. Information & Management, 44(2), 175-187.

https://doi.org/10.1016/j.im.2006.12.002

Levy, M., & Weitz, B. A. (2016). Retailing Management (1st ed.). McGraw-Hill.

Lichtenstein, D. R., Ridgway, N. M., & Netemeyer, R. G. (1993). Price perceptions and consumer shopping behavior: a field study. Journal of Marketing Research, 30(2), 234-245. https://doi.org/10.1177/002224379303000208

Liebana-Cabanilla, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 12(1), 25-64. https://doi.org/10.1007/s11628-017-0336-7

Lim, W. M. (2015). Antecedents and consequences of e-shopping: An integrated model. Internet Research, 25(2), 184-217. https://doi.org/10.1108/intr-11-2013-0247

Limbu, Y. B., Wolf, M., & Lunsford, D. (2012). Perceived ethics of online retailers and consumer behavioral intentions: the mediating roles of trust and attitude. Journal of Research in Interactive Marketing, 6(2), 133-154. https://doi.org/10.1108/17505931211265435

Lin, H. F. (2011). An empirical investigation of mobile banking adoption: the effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252-260. https://doi.org/10.1016/j.ijinfomgt.2010.07.006

Mao, D. (2010). A Study of Consumer Trust in Internet Shopping and the Moderating Effect of Risk Aversion in Mainland China. Journal Management, 1(1), 1-50.

Masoud, E. Y. (2013). The Effect of Perceived Risk on Online Shopping in Jordan. European Journal of Business and Management, 5(6), 2222-2839

McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: an integrative typology. Information Systems Research, 13(3), 334-359. https://doi.org/10.1287/isre.13.3.334.81

Oghazi, P., Karlsson, S., Hellström, D., & Hjort, K. (2018). Online purchase return policy leniency and purchase decision: mediating role of consumer trust. Journal of Retailing and Consumer Services, 41, 190-200. https://doi.org/10.1016/j.jretconser.2017.12.007

Pantano, E., & Viassone, M. (2015). Engaging consumers on new integrated multichannel retail settings: challenges for retailers. Journal of Retailing and Consumer Services, 25, 106-114. https://doi.org/10.1016/j.jretconser.2015.04.003

Pavlou, P. A. (2003). Consumer acceptance of electronic commerce – integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.

Pedroso, R. S., Zanetello, L. B., Guimarães, L. S. P., Pettenon, M., Gonçalves, V. M., Scherer, J. N., Kessler, F. H. P., & Pechansky, F. (2016). Confirmatory factor analysis (CFA) of the Crack Use Relapse Scale (CURS). Revista De Psiquiatria Clinica, 43(3), 37-40. https://doi.org/10.1590/0101-60830000000081.

Poncin, I., & Mimoun, M. S. B. (2014). The impact of ‘e-atmospherics’ on physical stores. Journal of Retailing and Consumer Services, 21(5), 851-859. https://doi.org/10.1016/j.jretconser.2014.02.013

Ponte, E. B., Carvajal-Trujillo, E., & Escobar-Rodriguez, T. (2015). Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tourism Management, 47, 286-302. https://doi.org/10.1016/j.tourman.2014.10.009

Schierz, P., Schilke, O., & Wirtz, B. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216. https://doi.org/10.1016/j.elerap.2009.07.005

Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W. R. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. Journal of Business Research, 58(7), 935-943. https://doi.org/10.1016/j.jbusres.2003.10.007

Siagian, H. (2014). Analisis Website Quality, Trust, dan Loyalty Pelanggan Online Shop. Jurnal Manajemen Pemasaran Fakultas Ekonomi Universitas Kristen Petra, 8(2), 55-61. https://doi.org/10.9744/pemasaran.8.2.55-61

Sica, C., & Ghisi, M. (2007). The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In M. A. Lange (Ed.), Leading-edge psychological tests and testing research (pp. 27-50). Nova Science Publishers.

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46, 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Vongurai, R. (2024). An Empirical Investigation of Factors Influencing Innovation and Organizational Performance among Logistics and Supply Chain Organizations in Thailand. The Journal of Distribution Science, 22(2), 1-10, https://doi.org/10.15722/jds.22.02.202402.1

Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. (1977). Assessing Reliability and Stability in Panel Models. Sociological Methodology, 8, 84-136. http://dx.doi.org/10.2307/270754

Wolfinbarger, M., & Gilly, M. C. (2003). eTailQ: Dimensionalizing, Measuring and Predicting Etail Quality. Journal of Retailing, 79, 183-198. https://doi.org/10.1016/s0022-4359(03)00034-4

Wong, C. W. Y., Hernandez, A., & Ringo, H. (2012). Green Operations and the Moderating Role of Environmental Management Capability of Suppliers on Manufacturing Firm Performance. International Journal of Production Economics, 140, 283-294. https://doi.org/10.1016/j.ijpe.2011.08.031

Wu, J. H., & Wang, Y. M. (2006). Measuring KMS Success: A Respecification of the DeLone and McLean’s Model. Journal of Information & Management, 43, 728-739. http://dx.doi.org/10.1016/j.im.2006.05.002

Yang, C. C. (2005). The Refined Kano’s Model and Its Application. Total Quality Management & Business Excellence, 16, 1127-137. http://dx.doi.org/10.1080/14783360500235850

Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262-270. https://doi.org/10.1108/07363761011038338

Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., & Xue, H. (2012). Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations. J. Geophys. Res., 117, 1-19. https://doi.org/10.1029/2012jd017655

Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model: a critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62

Downloads

Published

2025-09-29

How to Cite

Xiaoju, L. (2025). Factors Impacting E-shopping Intention Among Undergraduate Students in a Public University in China. Scholar: Human Sciences, 17(3), 102-110. Retrieved from https://assumptionjournal.au.edu/index.php/Scholar/article/view/8051