PM2.5 Pollution, Retail Trading, and Stock Market Returns

Main Article Content

Anya Khanthavit

Abstract

PM2.5 is a dangerous airborne pollutant. Its induced health and economic losses affect investors and stock markets worldwide. This study applies mediation analyses to examine the relationship of Bangkok’s PM2.5 pollution with Thai stock market returns, where retail trading serves as a mediator. Investors are unaware of the actual PM2.5 level, therefore, the PM2.5 level is a perceived level, not an actual level. Perception is measured by Google’s relative search volume index on “PM 2.5”. It is decomposed into correct perception (actual PM2.5 level) and misperception (regression residual of the full perception on the correct perception). Using a daily sample from August 1, 2016, to December 28, 2023, the generalized method of moments regression uncovered a negative and significant relationship. The main contributor was found to be the mediating effect of retail net buying volume induced by misperception. Further investigation suggests that this relationship is consistent with the noise-trader-risk explanation.

Article Details

Section
Articles

References

An, N., Wang, B., Pan, P., Guo, K., & Sun, Y. (2018). Study on the influence mechanism of air quality on stock market yield and Volatility: Empirical test from China based on GARCH model. Finance Research Letters, 26¸ 119–125. https://doi.org/10.1016/j.frl.2017.12.002

Baklaci, H. F., Olgun, O., & Can, E. (2011). Noise traders: A new approach to understand the phantom of stock markets. Applied Economics Letters, 18(11), 1035‒1041. https://doi.org/10.1080/13504851.2010.522513

Bangkok joins Chiang Mai on list of 10 cities with worst air. (2023, April 15). The Nation. Retrieved from https://www.nationthailand.com/thailand/general/40026688Barber, B. M., & Odean, T. (2008). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. Review of Financial Studies, 21(2), 785–818. https://doi.org/10.1093/rfs/hhm079

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173

Chen, Q., Zhang, J., Xu, Y., Sun, H., & Ding, Z. (2020). Associations between individual perceptions of PM2.5 pollution and pulmonary function in Chinese middle-aged and elderly residents. BMC Public Health, 20(1), 899. https://doi.org/10.1186/s12889-020-08713-6

Dai, X., Zhang, J., & Chang, V. (2023). Noise traders in an agent-based artificial stock market. Annals of Operations Research, 1–30. https://doi.org/10.1007/s10479-023-05528-7

De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703‒738. https://doi.org/10.1086/261703

Durbin, J. (1954). Errors in variables. Revue de l’Institut International de Statistique / Review of the International Statistical Institute, 22(1/3), 23–32. https://doi.org/10.2307/1401917

Eysenbach, G. (2011). Infodemiology and infoveillance: Tracking online health information and cyberbehavior for public health. American Journal of Preventive Medicine, 40(5) Supplement 2, S154–S158. https://doi.org/10.1016/j.amepre.2011.02.006

Farrow, A., Miller, K. A., & Myllyvirta, L. (2020). Toxic air: The price of fossil fuels. Greenpeace. Retrieved from https://www.greenpeace.org/southeastasia/publication/3603/toxic-air-the-price-of-fossil-fuels-full-report/

Fu, S., Viard, V. B., & Zhang, P. (2021). Air pollution and manufacturing firm productivity: Nationwide estimates for China. Economic Journal, 131(640), 3241‒3273. https://doi.org/10.1093/ej/ueab033

Greene, W. H. (2018). Econometric Analysis (8th ed.). London: Pearson.

Han, B., Park, J., & Park, K. (2024). Air quality, ES risks, and stock returns: Evidence from Korea. Finance Research Letter, 69 (B), 106239. https://doi.org/10.1016/j.frl.2024.106293

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.

Econometrica, 50(4), 1029–1054. https://doi.org/10.2307/1912775

Hao, L. X. (2020). Transboundary haze and stock market returns: Evidence from SGX. (Unpublished Bachelor’s Thesis). National University of Singapore, Singapore. Retrieved from https://scholarbank.nus.edu.sg/handle/10635/170240

Hu, X., Li, O. Z., & Lin, Y. (2014). Particles, pollutions and prices. SSRN Electronic Journal. Retrieved from https://ssrn.com/abstract=2525980

Huang, J., Xu, N., & Yu, H. (2020). Pollution and performance: Do investors make worse trades on hazy days? Management Science, 66(10), 4359‒4919. https://doi.org/10.1287/mnsc.2019.3402

Huang, W. (2023). The impacts of PM2.5 on stock’s earnings in China. International Journal of Information Systems and Informatics, 4(1), 34‒41. https://doi.org/10.47747/ijisi.v4i1.1099

Khanthavit, A. (2024). A multivariate mediation analysis of PM2.5 pollution and stock market returns. ABAC Journal, 44(2). Retrieved from https://www.dropbox.com/scl/fi/rw4u5bf01gkh41xe6qa2z/A-Mediation-Analysis-of-PM2.5-Pollution-and-Stock-Market-Returns.pdf?rlkey=u5m45m84rtl10mwhji6qherf3&dl=0

Khanthavit, A., & Khanthavit, S. (2023). ChatGPT and stress. ABAC Journal, 43(3), 213–224. https://doi.org/10.59865/abacj.2023.39

Khanthavit, R., & Khanthavit, A. (2025). PM 2.5 pollution, perception, and mental stress. International Journal of Public Health Science, 14 (1), 292–301. http://doi.org/10.11591/ijphs.v14i1.24587

King, J. D., Zhang, S., & Cohen, A. (2022). Air pollution and mental health: Associations, mechanisms and methods. Current Opinion in Psychiatry, 35(3), 192‒199. https://doi.org/10.1097/YCO.0000000000000771

Kirk-Reeve, S., Gehricke, S. A., Ruan, X., & Zhang, J. E. (2021). National air pollution and the cross-section of stock returns in China. Journal of Behavioral and Experimental Finance, 32, 100572. https://doi.org/10.1016/j.jbef.2021.100572

Lepori, G. M. (2016). Air pollution and stock returns: Evidence from a natural experiment. Journal of Empirical Finance, 35, 25–42. https://doi.org/10.1016/j.jempfin.2015.10.008

Levy, T., & Yagil, J. (2011). Air pollution and stock returns in the US. Journal of Economic Psychology, 32(3), 374–383. https://doi.org/10.1016/j.joep.2011.01.004

Li, R., Liu, L., Qiu, Y., & Tian, X. (2024). Air pollution and stock returns: The cash flow risk channel. Pacific-Basin Finance Journal, 85, 102379. https://doi.org/10.1016/j.pacfin.2024.102379

Li, Q., & Peng, C. H. (2016). The stock market effect of air pollution: Evidence from China. Applied Economics, 48(36), 3442–3461. https://doi.org/10.1080/00036846.2016.1139679

Liu, X., & Wu, D. (2024). Does PM2.5 accelerate the firm evolution? Evidence from 800-mm isoline in China. Energy Policy, 184, 113841. https://doi.org/10.1016/j.enpol.2023.113841

Mavragani, A., Ochoa, G., & Tsagarakis, K. P. (2018). Assessing the methods, tools, and statistical approaches in Google Trends research: Systematic review. Journal of Medical Internet Research, 20(11), e270. https://doi.org/10.2196/jmir.9366

Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708. https://doi.org/10.2307/1913610

Pal, M. (1980). Consistent moment estimators of regression coefficients in the presence of errors in variables. Journal of Econometrics, 14(3), 349–364.

https://doi.org/10.1016/0304-4076(80)90032-9

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53(1), 61–65. Retrieved from https://www.jstor.org/stable/2352357

Phringphred, A. (2023). SEC applied big data for analyzing mutual-fund investment behavior for investors of different generations for capital-market improvement (ก.ล.ต. ใช้ Big Data เจาะพฤติกรรมการลงทุนกองทุนรวมของผู้ลงทุนแต่ละ generation ต่อยอดพัฒนาตลาดทุนไทย). Retrieved from https://secopendata.sec.or.th/PDF-Research/CMDC0900ST090201.pdf

Racicot, F. E., & Théoret, R. (2010). Optimal instrumental variables generators based on improved Hausman regression, with an application to hedge fund returns. Journal of Wealth Management, 13(1), 103–123. https://doi.org/10.3905/JWM.2010.13.1.103

SET, together with brokers, the Thai Chamber of Commerce and Board of Trade of Thailand, and the Federation of Thai Industries initiated new frontier roadshow. Forty thousand, new investors were targeted (ตลท. จับมือโบรกฯ-หอการค้า-ส.อ.ท. เดินหน้าจัดโรดโชว์ ตั้งเป้าปีนี้มีผู้ลงทุนเพิ่ม 4 หมื่นราย). (2015, April 1). Stock News Online. Retrieved from https://www.dropbox.com/s/pzuecipcyl3yqxu/STOCK%20NEWS%20ONLINE.pdf?dl=0

Sharma, S., Chandra, M., & Kota, S. H. (2020). Health effects associated with PM2.5: A systematic review. Current Pollution Reports, 6(4), 345–367. https://doi.org/10.1007/s40726-020-00155-3

Smales, L. A. (2021). Investor attention and global market returns during the COVID-19 crisis. International Review of Financial Analysis, 73, 101616. https://doi.org/10.1016/j.irfa.2020.101616

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290‒312. https://doi.org/10.2307/270723

Tan, J., Tan, Z., & Chan, K. C. (2021). Does air pollution affect a firm’s cash holdings? Pacific-Basin Finance Journal, 67, 100549. https://doi.org/10.1016/j.pacfin.2021.101549

Teng, M., & He, X. (2020). Air quality levels, environmental awareness and investor trading behavior: Evidence from stock market in China. Journal of Cleaner Production, 244(20), 118663. https://doi.org/10.1016/j.jclepro.2019.118663

United Nations Environment Programme. (2023). Pollution action note — Data you need to know. Retrieved from https://www.unep.org/interactives/air-pollution-note/#:~:text=Pollution%20Action%20Note%20%E2%80%93%20Data%20you,million%20premature%20deaths%20every%20year

Wancharoen, S. (2024, February 15). WFH urged amid rise in PM2.5. Bangkok Post. Retrieved from https://www.bangkokpost.com/thailand/general/2742275/wfh-urged-amid-rise-in-pm2-5

Wetchayont, P. (2021). Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand. Advances in Meteorology, 2021, 6697707. https://doi.org/10.1155/2021/6697707

Wetchayont, P., Hayasaka, T., & Khatri, P. (2021). Air quality improvement during COVID-19 lockdown in Bangkok Metropolitan, Thailand: Effect of the long-range transport of air pollutants. Aerosol and Air Quality Research, 21(7), 200662. https://doi.org/10.4209/aaqr.200662

World Bank Group. (2022). The global health cost of PM2.5 air pollution: A case for action beyond 2021. Retrieved from https://elibrary.worldbank.org/doi/abs/10.1596/978-1-4648-1816-5

World Federation of Exchanges. (2024). Market Statistics—March 2024. Retrieved from https://focus.world-exchanges.org/issue/march-2024/market-statistics

World Health Organization. (2023). Air pollution: The invisible health threat. Retrieved from https://www.who.int/news-room/feature-stories/detail/air-pollution--the-invisible-health-threat

Wu, Q., Chou, R. K., & Lu, J. (2020). How does air pollution-induced fund-manager mood affect stock markets in China? Journal of Behavioral and Experimental Finance, 28, 100399. https://doi.org/10.1016/j.jbef.2020.100399

Wu, Q., & Lu, J. (2020). Air pollution, individual investors, and stock pricing in China. International Review of Economics and Finance, 67, 267–287. https://doi.org/10.1016/j.iref.2020.02.001

Xu, H., & Chen, Y. (2022). The impact of air pollution on the stock performance: Evidence from China new energy vehicle industry. Energy Policy, 184, 113841. https://doi.org/10.1016/j.enpol.2023.113841

Xu, M., Wang, Y., & Tu, Y. (2021). Uncovering the invisible effect of air pollution on stock returns: A moderation and mediation analysis. Finance Research Letters, 39, 101646. https://doi.org/10.1016/j.frl.2020.101646

Zhang, Y., Jiang, Y., & Guo, Y. (2017). The effects of haze pollution on stock performances: Evidence from China. Applied Economics, 49(23), 2226–2237. https://doi.org/10.1080/00036846.2016.1234703

Zhang, Y., & Tao, L. (2019). Haze, investor attention and China’s stock markets: Evidence from internet stock forum. Finance Research Letters, 31, 363–368. https://doi.org/10.1016/j.frl.2018.12.001

Zhao, N., Liu, Y., Vanos, J. K., & Cao, G. (2018). Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: Time-series analyses using the Prophet procedure. Atmospheric Environment, 192, 116–127. https://doi.org/10.1016/j.atmosenv.2018.08.050

Zhao, Q., & Yuan, C. (2020). Did haze pollution harm the quality of economic development?—An empirical study based on China’s PM2.5 concentrations. Sustainability, 12(4), 1607. https://doi.org/10.3390/su12041607

Zhong, Y., & Liu, J. (2021). Correlations and volatility spillovers between China and Southeast Asian stock markets. Quarterly Review of Economics and Finance, 81, 57–69. https://doi.org/10.1016/j.qref.2021.04.001