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Abstract 

 

The uncertainty of return on investment is a major concern for the vast 

majority of investors. Under normal market conditions, a portfolio's risk 

exposure over a specific time frame with a predetermined confidence level can 

be measured. Since a portfolio’s return is rarely characterized by the assumption 

of a multivariate normal distribution, the use of normality Value-at-Risk (VaR) 

plays a crucial role in risk mitigation, but can generate an undesirable measure 

of risk exposure for portfolio investment. With a dynamic tool in modeling 

multivariate distribution regardless of the assumption of joint normality, 

applying a copula is a practical alternative choice for extracting a cumulative 

joint distribution for a portfolio’s return. The applications in this work are 

illustrated by the portfolios of the four largest and the four smallest market 

capitalization stocks in the tourism and hospitality sector. It was found that the 

portfolio returns of the large and small market capitalization portfolios were 

characterized by logistic and Student’s t distributions respectively. 

Consequently, the VaR and conditional VaR based on the Gaussian copula, 

could be used to characterize and estimated the distributions of the respective 

portfolio returns according to the logistic and Student’s t distributions. The 

conditional VaR of the large and small market capitalization portfolios 

calculated from the copula method provides a slightly higher level of risk than 

the conditional VaR and the VaR with the assumption of a multivariate normal 

distribution. Moreover, the small market capitalization portfolio provides 

slightly higher values of VaR and CVaR than the large market capitalization 

portfolio for all assumptions of VaR. Therefore, the use of conditional VaR 
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based on the Gaussian copula is more reasonable for investors who 

conservatively manage their investment portfolios. However, managing the 

investment portfolio based on a conservative level does not completely imply 

the performance of portfolio management. On the other hand, an accurate value 

of VaR, directly estimated from the actual distribution of a portfolio’s returns, 

provides a vital means of assessing better portfolio management. Due to being 

sensitively volatile to several surrounding factors within the hospitality and 

tourism sector, implementing a conservative investment strategy is more 

suitable. 

 

Keywords:  Conditional Value-at-Risk, Multivariate Distribution Function, 

Copula, Tourism & Hospitality 

 

 

INTRODUCTION 

 

The stock exchange is an 

important investment channel for 

investors to allocate their resources in 

risky assets according to their risk 

appetite which reflects their 

expectation to receive a favourable 

return in the future.  

However, the assets sold in the 

stock exchange always contain a large 

swing in their value when information 

reflects the investors’ expectations.  In 

the last quarter of the year 2019, the 

Thailand stock index (SET) 

continuously declined when the 

outbreak of the 2019 Coronavirus 

originated in Wuhan, spreading 

widely, and causing more patients to 

become sick or to die from the 

disease. The index sharply dropped to 

a more than three-year low in line with 

a sharp jump in infections outside 

mainland China, and increases in new 

coronavirus infections in Thailand, 

strongly undermining confidence in 

the Thai economy. Not only the 

devaluation of the Thai stock index, 

but also the inevitable slowdown of 

the hospitality and tourism industry, 

one of the most important sectors in 

generating income for Thailand, led to 

deterioration of investors’ confidence. 

This situation was exacerbated as 

Chinese tourists are considered as the 

most significant nationality regarding 

visits to Thailand, accounting for the 

largest proportion of tourism income. 

Due to the COVID-19 pandemic, 

the government declared a state of 

emergency and imposed strict travel 

bans for foreign tourists coming to 

Thailand. As a result, foreign tourist 

arrivals completely collapsed. 

According to the data collected by the 

Ministry of Tourism and Sports 

(2020), the service sector GDP 

contracted by 1.1%, mainly from 

declines in the number of tourists, 

negatively affecting tourism and 

tourism-related sectors, particularly 

accommodation and food service 

activities. In addition, the tourism 

industry is expected to suffer more 

than a $50 billion loss in revenue or 

about 9.5% of GDP for 2020. Many 

informal businesses are at risk, 

depending on tourists’ spending, 
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which fell 40% in the first quarter of 

2020. The COVID-19 pandemic is 

considered as a source of systematic 

risk, seriously affecting global stock 

markets with uncertainty and resulting 

in a large swing of share prices. 

Nhamo et al., (2020) observed that the 

news of the COVID-19 outbreak and 

related measures included travel bans, 

and bans on mass gatherings, put in 

place to curb the spread of the disease, 

dampening the stock markets and 

leading to declines in tourism-related 

stock prices. Therefore, tourism firms 

and those in their value chain became 

the worst performers on global stock 

markets. 

It is unavoidable that investors 

who had invested in tourism and 

hospitality stock must assess the 

potential risks that may arise from 

their investments. Managing an 

investment is considered as risk 

management where some investors 

passively accept risks, while other 

investors may intentionally attempt to 

create competitive strategies to 

eliminate their risk exposure. 

However, risk is an important factor 

for both corporations and investors, 

especially for the financial industry 

who must carefully monitor this factor 

due to its damaging effects. There are 

two significant risk exposures 

considered by a corporation where 

business risk is regarded as a business 

decision companies make and the 

business environment in which they 

operate (Jorion, 2007). In addition, 

broad macroeconomic risks are those 

included in the business environment. 

Furthermore, the potential losses 

unsettled in financial market activities 

are classified as a financial risk where 

financial managers carefully monitor 

various kinds of risks such as liquidity 

risk, credit risk, operational risk, and 

market risk. Many researchers and 

professional risk managers 

intensively discover the procedure for 

identifying, measuring, and managing 

financial risks to mitigating collapse. 

Jorion (2007) proposed one possible 

course of action in setting-up stop-

loss limits, in which the cumulative 

loss cannot exceed a certain limit. 

However, there is no assurance to 

confirm that the loss will closely 

match the pre-determined limit. 

Another approach for risk 

measurement is the concept of 

duration which firstly solves the 

assets’ price given the current yield. 

The next approach is to perform a 

sensitivity analysis that linearly 

measures the exposure of an asset’s 

value to the yield. A further approach 

is to perform a scenario analysis or 

stress test which recalculates the 

portfolio’s price over a range of 

yields. Unfortunately, these 

approaches are inadequate as they do 

not consider the volatility of the risk 

factors and the correlation which 

could diversify across the market. 

With the limitations of the 

conventional risk measurement 

methods, Value at Risk (VaR) was 

proposed to combine the relationship 

between price and yield with the 

probability of a hostile market 

movement.  Thereby, the VaR is 

significantly considered as a statistical 

risk measure of potential losses which 

accounts for both correlation and 

leverage. VaR has been extensively 
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applied to measure liquidity risk, 

credit risk, operational risk, and 

market risk. Nonetheless, there is 

nothing new about the idea of VaR as 

it draws from the mean-variance 

framework developed by Markowitz 

(1952).  

Investment in the stock market is 

generally the holding of many 

company's equities at the same time as 

a portfolio with various investment 

objectives through strategic and 

tactical asset allocation. For instance, 

Balcilar et al. (2015) studied the total 

risk exposure of stock investment in 

10 various industries composed in the 

Islamic Sector Indexes. These 

objectives oblige an equity portfolio 

to meet a certain predetermined 

condition of risk tolerance. The risk 

tolerance and actual risk level of a 

portfolio often uses VaR as the risk 

measurement in which the value of 

VaR may be specified in monetary 

terms or as a percentage of the 

investment value at the beginning of 

the investment period. There are 

several works illustrating the benefits 

of VaR and its applications in risk 

measurement, such as Jorion (2002), 

Yamai and Yoshiba (2005), Allen et 

al. (2012a), Allen et al. (2012b) and 

Dargiri et al. (2013). 

There are still some arguments 

regarding the use of VaR considering 

the issue that the calculation does not 

produce true results, therefore 

increasing the risk and associated 

damages higher than the acceptable 

level. In addition, having multiple 

models resulted in different risk 

values, making it more difficult to 

choose a suitable model to apply 

(Marshall and Seigel, 1997). 

Nevertheless, this risk can be reduced 

by testing the accuracy of the model 

via the method of backtesting. 

Since the VaR is used to restrict 

the risk but the results may not be 

satisfactory, another method called 

Conditional Value at Risk (CVaR) or 

Expected Shortfall was initiated by 

Artzner et al. (1997). The advantage 

of the CVaR over VaR is having the 

ability to measure the benefits of 

diversification. The disadvantage of 

CVaR is that its calculations are more 

complex and difficult to understand. 

Based on the four properties of 

acceptable risk feature proposed by 

Artzner et al. (1999), the VaR does not 

have the property of sub-additive in 

which the investment diversification 

to multiple securities causes an 

increase of VaR since the VaR gives 

the weight to calculate only the 

interested quantile. On the other hand, 

CVaR provides the same weight for 

all information exceeding the amount 

of the interesting quantile or beyond 

the confidence level. Rockafellar and 

Uryasev (2002) found that using 

CVaR provides the ability to measure 

risk that is greater than the normal risk 

value (VaR). This result is also 

consistent with Yamai and Yoshiba 

(2005).  

Due to global economic crises, 

there have been several improvements 

in investment theory, especially the 

Modern Portfolio Theory initiated by 

Markowitz (1952). This theory 

proposed crucial assumptions for a 

portfolio’s return, where there is 

normality and time is invariant. It can 

be implied that expected returns are 
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linearly correlated to each other. 

Unfortunately, there are also 

numerous pieces of evidence proving 

that daily returns of stock do not lie 

within the normal distribution. 

Therefore, the traditional portfolio 

theory is inescapably suspected when 

the portfolio’s risk factors are 

measured according to normality, 

which can lead to underestimating the 

value at risk (VaR). For instance, the 

evidence found by Longin and Solnik 

(2001) and Ang and Chen (2002) 

shows that the return of assets is more 

highly correlated during the course of 

market downturns when the risk of a 

portfolio could be higher than 

expected. 

With a dynamic tool in modelling 

multivariate distribution, regardless of 

the assumption of joint normality, 

applying a copula is a more practical 

alternative option in which the copula 

provides a multivariate joint 

distribution merging the marginal 

distribution and the dependence 

between the variables. Conversely, 

the copula can decompose any d -

dimensional joint distribution into d

marginal distributions and a copula 

function. In addition, Salvadori et al. 

(2007) supported that the further 

dominance of copula is the easiest to 

apply with various complex marginal 

distributions such as finite mixtures 

which increasingly draw the attention 

of researchers. It may be broadly 

found that the copula has been 

generally used in financial 

applications where the papers of 

Bouyé et al. (2000), Embrechts et al. 

(2002) and Embrechts et al. (2003) are 

general examples of copula used to 

model risk limits and extreme values. 

 Additionally, the papers of 

Cherubini and Luciano (2001) and 

Fortin and Kuzmics (2002) also 

applied the copula to estimate VaR in 

different aspects. Cherubini and 

Luciano (2001) used the Archimedean 

copula family and the historical 

empirical distribution to estimate the 

marginal distribution. Fortin and 

Kuzmics (2002) used a linear 

combination of copula to estimate the 

portfolio's VaR which composed of 

the FSTE and DAX stock indices. 

In this work, we discuss the 

concepts and applications of the 

copula in measuring a conditional 

value-at-risk (CVaR) portfolio. This 

paper is organized as follows. The 

various estimation approaches for 

portfolio value-at-risk and a 

complementary measure (conditional 

value-at-risk) are first defined. Sklar's 

theorem and the concept of the copula 

is then presented. The estimation 

approach and model selection criteria 

for copula’s family is also discussed. 

Finally, the proposed risk 

measurement is applied to measure 

two different stock portfolios, where 

the first portfolio is composed of the 

four largest tourism and hospitality 

market capitalization companies 

listed in the Stock Exchange of 

Thailand, namely Central Plaza Hotel 

PCL. (CENTEL), Shangri-La Hotel 

PCL. (SHANG), Dusit Thani PCL. 

(DTC), and The Erawan Group PCL. 

(ERW). The second portfolio is 

composed of the four smallest tourism 

and  hospitality  market capitalization 
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companies listed in the Stock 

Exchange of Thailand which are 

Veranda Resort PCL. (VRANDA), 

Asia Hotel PCL. (ASIA), City Sports 

and Recreation PCL. (CSR), and the 

Mandarin Hotel PCL. (MANRIN). 

For both the large and small 

capitalization tourism and hospitality 

stock portfolios, the contributions of 

CVaR using copula in modelling 

multivariate distribution are 

empirically examined. 

 

RESEARCH OBJECTIVES 

 

With a dynamic tool in modelling 

multivariate distributions, this work 

aims to present the concepts and 

properties of copula function as well 

as an application of the copula in 

estimation of the conditional value at 

risk (CVaR) of the two stock 

portfolios, where the first portfolio is 

composed of the four largest market 

capitalization stocks listed in the 

tourism and hospitality sector of the 

Stock Exchange of Thailand. The 

second portfolio is composed of the 

four smallest tourism and hospitality 

market capitalization stocks listed on 

the Stock Exchange of Thailand 

during February 1, 2010, to 

November 22, 2019. 

 

MATHEMATICAL DEFINITION 

OF VALUE AT RISK 

 

There are diverse approaches to 

estimate the VaR depending on the 

requirements of the probability 

distribution, such as the historical 

simulation approach, Monte Carlo 

approach, and the analytical or 

variance-covariance approach. The 

historical simulation approach does 

not require knowledge of any 

probability distribution of the asset 

returns, as the value of VaR can be 

measured based on the sample’s 

quantile. On the other hand, the Monte 

Carlo and the analytical approaches 

require knowledge of the probability 

distribution of the asset’s returns 

where the VaR is derived from the 

standard deviation. 

 

Historical Simulation Approach of 

Value at Risk 

Sorting the    portfolio’s    return  

( pR ) in ascending order, the VaR is 

the smallest value of the portfolio’s 

return in which the percentile at the 

level of confidence c  is located.  

 
p

cVaR R  

where 
p

cR  is the percentile of a 

portfolio’s return at the level of 

confidence c . 

 

Analytical Approach of Value at 

Risk 

Since VaR is a statistical 

measurement of the worst loss 

depending on the current position, the 

predetermined probability distribution 

that a certain loss will be larger than 

the VaR is defined as:  

 

  1P L VaR c    

 

where c  denotes the confidence level  

and L  denotes the loss level. 

With a known probability 

distribution      for      the     portfolio's
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Figure 1: Graphical illustration of Value at Risk 

 

return ( pR ), in general form the VaR 

can be derived from the probability 

distribution of the portfolio’s return, 

where 
*

pR represents the worst 

possible loss realization of the 

investment portfolio. In other words,
*

pR  is the quantile of the probability 

distribution where the cut-off value is 

predetermined by the probability of 

being exceeded. 
*

*( ) ( ) 1

pR

p p p pP R R f R dR c


     

 

With the portfolio investment 

theory developed by Markowitz 

(1952), the portfolio’s return ( pR ) is 

described by the weighted average of 

all individual expected returns held in 

the portfolio, where iw  denotes the 

percentage composition of a particular 

holding of assets in a portfolio and iR

denotes the expected rate of return for 

each individual asset. 

1 1 2 2

1

N

p N N i i

i

R w R w R w R w R


    

 To shorten the notation of the 

portfolio’s return, this can be written 

in matrix notation as: 

 

1

2

1 2p N

N

R

R
R w R w w w

R

 
 
  
 
 
 

 

 

where w  denotes the transposed 

vector of weights given to each asset. 

and R  denotes the vertical vector of 

individual assets’ return.  

Consequently, the portfolio’s 

expected return ( ( )pE R ) is: 

 

1

( )
N

p p i i

i

E R w w  


    

 

and the portfolio's variance ( ( )pV R ) 

is: 

2 2 2

1 1 1,

( )
N N N

p p i i i j ij

i i j j i

V R w w w  
   

      

2 2

1 1

2
N N N

i i i j ij

i i j i

w w w 
  

    

 

If there are a number of assets in 

the portfolio, the portfolio’s variance 
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( ( )pV R ) can be more conveniently 

written in matrix notation as: 
 

2

p w w    

 

 
 

where   denotes the variance-

covariance matrix of the portfolio’s 

return.  

To estimate the exposure X  in 

monetary terms, the portfolio’s 

variance is multiplied by the initial 

portfolio’s investment value W . 
 

2 2

pW X X    

 

The portfolio's variance has thus 

far been related with the distribution 

of the portfolio’s return, in order to 

estimate the VaR. Assuming that 

1 2( , , , )NF R R R and 1 2( , , , )Nf R R R  

are the cumulative density function 

(cdf) and the probability density 

function (pdf) of a joint random 

variable of the assets’ returns 

1 2( , , , )NR R R respectively, the risk’s 

level is ( )pVaR R  with c confidence 

level in terms of the percentage of the 

investment value at the beginning of 

the investment period, and can be 

derived by multiplying R  (resulting 

from the following equation) by -1. 
 

2 2

1 1( ,.., ) .. 1
N NR R w R w R

N Nf R R dR dR c
 

 
    

 

= 1 c  

The valuation of the VaR based 

on the previous equation is practically 

problematic. However, when 

evaluating the risk level by the VaR 

for a short time horizon such as 1 day, 

it can generally be assumed that the 

joint probability distribution of 

1 2( , , , )NR R R  is normal, in which 

the vector of the expected value is 

zero and the variance-covariance 

matrix is  . 

For the traditional portfolio 

theory, the returns of all individual 

securities are assumed to be normally 

distributed. Therefore, the confidence 

level c , can simply be transformed 

into a standard normal deviate  . 

Therefore, the probability of losing 

more than   is 1 c . 
 

p pVaR W X X      

 

The portfolio’s variance basically 

depends on variances, covariances, 

and the number of assets in the 

portfolio. However, the scale of 

covariance depends on the variances 

of the individual assets which are not 

easy to interpret. Thus, the correlation 

coefficient ( ij ) is proposed to 

overcome this complication as the ij  

is a scale-free measure of linear 

dependence which is represented by: 
 

ij

ij

i j




 
  

To extend the ability of the VaR 

in measuring the portfolio’s risk 

where there are a number of risky 

assets in the portfolio, an alternative 

complementary measure called 
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conditional value at risk, expected 

shortfall, conditional loss, or expected 

tail loss (ETL) can provide more 

information on how much could be 

lost if we blow beyond the VaR. 

 
( )

( | )
( )

VaR

p p p

p p VaR

p p

R f R dR
CVaR E R R VaR

f R dR





  




 

( )
( | )

( )

VaR

p p p

p p VaR

p p

R f R dR
CVaR E R R VaR

f R dR





  



 

 

In case of a standard normal 

variate, the CVaR can be shortened to: 

 

( )
( | )

( )
p pE R R

F







  


 

 

where  denotes the standard normal 

cumulative distribution function. 

 

Skla’s Theorem and Copula 

 

This section provides the 

definition of copula and an equitable 

definition for the context of the 

random variable where the copula has 

been used to describe the dependence 

structure between random variables. 

Suppose the marginals of a 

random vector  1 2, , , dX X X  are 

continuous, whereby the marginal cdf 

is ( ) ( )i i i iF x P X x  . With the 

integration of each component, the 

random vector  

1 1 1( , , ) ( ( ), , ( ))d d dU U F X F X  

has uniformly distributed marginals. 

The copula of  1 2, , , dX X X  is 

defined as the joint cumulative 

distribution function of 

1 2( , , , )dU U U . 

 

1 1 1( , , ) ( , , )d d dC u u P U u U u    

 

The benefit of this expression is 

to generate a pseudo-random sample 

from the multivariate probability 

distribution. The required sample can 

be illustrated as: 

  1 1

1 1 1, , ( ( ), , ( ))d d dX X F U F U   

 

Since iF  is assumed to be 

continuous, the inversion of 1

iF   is 

uncomplicated and can be revised as: 
1 1

1 1 1 1( , , ) ( ( ), , ( ))d d d dC u u P X F u X F u    
1 1

1 1 1 1( , , ) ( ( ), , ( ))d d d dC u u P X F u X F u     

 

Definition 1. A d -dimensional 

copula is a function C , whose 

domains are  0,1
d

and whose range is 

 0,1 with the following properties: 

1. 1 1 1( , , ,0, , , ) 0i i dC u u u u   , 

when at least one element of u  is 0 ; 

2. (1, ,1, ,1 ,1)C u u , if one 

element is u  and all others are 1. 

3. For instance,    
2

: 0,1 0,1C 

is a bivariate copula if ( ) 0C x   for all 

 
2

0,1x when at least one element of 

x  is 0 .  

In addition, 1 2( ,1) (1, ) 1C x C x   

for all  
2

1 2( , ) 0,1x x  .  

Moreover, for all 1 2( , )a a ,

 
2

1 2( , ) 0,1b b   with 1 1a b  and 

2 2a b , we have: 
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   2 2 1 2, ( , ) ( , )CV a b C a b C a b   

2 1 1 1( , ) ( , )C a b C a b   

 

where   , 0CV a b   

 

Definition 2. In the bivariate case, the 

copula function C  is the joint 

distribution function of the random 

vector 1 2( , )tU U U  where 

( )i i iU F X and iF is the marginal 

distribution function of  iX , 1,2i   

which can be illustrated as follows: 

 

1 2 1 1 2 2( , ) ( ( ), ( ))H x x C F x F x  

 

where H  is the joint distribution of 

1 2( , )X X .  

 

Consequently, it can be assumed 

that a copula is any bivariate 

distribution function whose marginal 

distributions are a standard uniform 

distribution. 

 

Sklar’s Theorem 

 

Theorem 1. Every multivariate 

cumulative distribution function of a 

random vector 1 2( , , , )dX X X  can 

be expressed using Sklar’s theorem in 

terms of its marginal distribution and 

a copula C  as follows: 

 

 1 1 1( , , ) , ,d d dH x x P X x X x    

1 1 2 2( ( ), ( ), , ( ))d dC F x F x F x  

 
If this multivariate distribution 

has a density h , the relationship 

between the pdf of asset returns and 

the copula pdf can be assumed to be: 

 

1 1 1 1 1( ,.., ) ( ( ),.., ( )) ( ) ( )d d d d dh x x c F x F x f x f x   

1 1 1 1 1( ,.., ) ( ( ),.., ( )) ( ) ( )d d d d dh x x c F x F x f x f x    

 

where c  is the copula's density. 

 

Theorem 2. In the bivariate case, if 1F  

and 2F  are continuous, the copula C  

is unique on 1 2( ) ( )Ran F Ran F .  

Conversely, for all nx , if C

is a copula and 1 2,F F are distribution 

functions, then the function H  is:  
 

1 2 1 1 2 2( , ) ( ( ), ( ))H x x C F x F x  

 

where H  is a joint distribution 

function with marginal distributions 

1F  and 2F . The derivation of these 

expressions can be found in Nelsen 

(2007). 

 

THE ESTIMATION OF 

CONDITIONAL VALUE AT 

RISK USING COPULA 

 

Fitting the Distributions of Stock 

Return 

 

In determining the marginal 

distribution of each stock return, the 

Anderson-Darling test was employed 

to evaluate the possible distributions 

that could best describe the behaviour 

of the stock return. The probability 

distributions considered for 

comparison purposes consisted of the 

normal distribution, Student’s t-

distribution, log-normal distribution, 
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logistic distribution, triangular 

distribution, generalized beta 

distribution, and generalized extreme 

value distribution. The stationary time 

series data of daily historical returns 

from before the outbreak of the 2019 

Coronavirus (February 1, 2010, to 

November 22, 2019), was used for 

analysis of the hospitality and tourism 

companies connected with the four 

largest and the four smallest market 

capitalization stocks registered in the 

Stock Exchange of Thailand. It was 

found that the logistic distribution 

provides an outstanding description of 

the returns of all four of the largest 

market capitalization stocks. In 

addition, it was found that the 

Student’s t-distribution best describes 

the returns for all four of the smallest 

market capitalization stocks. Even 

though the normal distribution does 

not provide a reasonable fit with these 

data sets, the logistic and Student’s t 

distributions are implicitly similar in 

shape to the normal distribution (i.e. 

bell shaped) because they are 

symmetrical and unimodal. However, 

the tailed distribution of the logistic 

and Student’s t are slightly fatter than 

those of the normal distribution.  

Considering the portfolio of the 

four largest market capitalization 

stocks, it was assumed that the return 

iR  is a logistic distribution whose 

domain is in the range of  ,  . 

The distribution is determined by two 

parameters ( and  ). The location 

parameter   explains where the 

distribution is centered on the 

horizontal axis. The scale parameter 

  explains what the spread of the 

distribution is. The probability density 

function (pdf) and cumulative density 

function (cdf) of the logistic 

distribution are calculated 

respectively as follows: 
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where the mean and variance of iR  are 

  and 

2 2

3

 
respectively. 

 

For the portfolio of the four 

smallest market capitalization stocks, 

it was assumed that the return iR  fits 

the Student’s t-distribution whose 

domain also lies in the range of 

 ,  . However, the characteristic 

of the Student’s t-distribution is 

determined by a positive integer shape 

parameter which is the degree of 

freedom ( ) that went into the 

estimate of the standard deviation. 

With greater degrees of freedom, the 

Student’s t- distribution is almost 

indistinguishable from the normal 

distribution. The probability density 

function (pdf) and cumulative density 

function (cdf) of the Student’s t-

distribution are calculated 

respectively as follows: 

 

https://www.statisticshowto.com/scale-parameter/
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where   is the Gamma function and 

2 1F  is the hypergeometric function. 

Due to the computational 

complexity of the pdf and cdf of both 

distributions, the R programming 

language was employed to estimate 

the parameters of each distribution. 

Moreover, various packages of the R 

programming language were applied 

for various purposes. 

With the package “fitdistrplus” 

proposed by Delignette-Muller and 

Dutang (2015), the parameters of each 

probability distribution which best 

describe each stock return can be 

estimated by applying a maximum 

likelihood estimation method. The 

estimated parameters of the logistic (

̂ and ̂ )  and  Student’s t (̂ ) 

distributions are shown in Table 1 and 

Table 2 respectively. In addition, the 

“plotdist” function of Delignette-

Muller and Dutang (2015) was 

applied to provide the plots of 

empirical and theoretical density for 

each daily stock return as illustrated in 

Figure 2-9.  

Since the logistic distribution has 

no shape parameter, the logistic pdf 

thus has only one shape which is the 

bell shape. As illustrated in Figure 2-

5, it was found that the shape of the 

distribution does not change but the 

pdf of CENTEL and SHANG were 

shifted to the right. On the other hand, 

the pdf of DTC and ERW were shifted 

to the left. Obviously, it can be seen 

that the shape of the logistic 

distribution is very similar to that of 

the normal distribution. The main 

difference lies in the tails of the 

distribution. 

 

 

Table 1: The estimated parameters ̂  and ̂ which determine the location and 

scale of the logistic distribution of each stock return in the large market 

capitalization portfolio. 

Symbol 
Estimated Parameters 

Alpha (̂ ) Beta ( ̂ ) 

CENTEL 0.05105 1.17904 

SHANG 0.02484 1.18389 

DTC -0.01939 1.00443 

ERW -0.00854 1.06660 
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Figure 2: The plots of empirical and theoretical density for the daily return of 

CENTEL  

 

 
Figure 3: The plots of empirical and theoretical density for the daily return of 

SHANG  
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Figure 4: The plots of empirical and theoretical density for the daily return of 

DTC 

 

 

 
Figure 5: The plots of empirical and theoretical density for the daily return of 

ERW
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The shape of the distribution for 

each stock return in the small market 

capitalization portfolio is 

indistinguishably the same, as the 

estimated degree of freedom (̂ ) for 

each distribution is very similar. Even 

when the degree of freedom increases, 

the Student’s t-distribution is more 

favorable than the normal distribution 

as it provides the lowest score of the 

Akaike information criterion (AIC) 

for the model comparison.

 

Table 2: The estimated parameter ̂  which determines the shape of the 

Student’s t- distribution for each stock return in the small market capitalization 

portfolio. 

Symbol 
Estimated Parameters 

Degree of freedom (̂ ) 

VRANDA 294.4942 

ASIA 294.6770 

CSR 298.6299 

MANRIN 297.5352 

 

 
Figure 6: The plots of empirical and theoretical density for the daily return of 

VRANDA 
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Figure 7: The plots of empirical and theoretical density for the daily return of 

ASIA 

 

 

 
Figure 8: The plots of empirical and theoretical density for the daily return of 

CSR 
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Figure 9: The plots of empirical and theoretical density for the daily return of 

MANRIN 

 

 

As the returns for each stock in 

the large market capitalization 

portfolio are distributed logistically, 

this matches the theory of Johnson 

and Kotz (1972), which suggests that 

the joint distribution of the stock 

return ( 1, , NR R ) is also the joint 

logistic distribution, whereby the joint 

pdf and joint cdf can be shown 

respectively as: 
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where 

2 2

3

i
i

 
  . 

 

Since the Student’s t-distribution 

provides the best description for each 

stock return in the small market 

capitalization portfolio, this follows 

the theory of Kotz and Nadarajah 

(2004) which suggests that the joint 

distribution of the stock return ( R ) is 

also the joint Student’s t-distribution 
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whereby the joint pdf can be shown 

as: 
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where a random vector 

 1, , PR R R  has the Pvariate 

Student’s t-distribution with the 

degree of freedom  , 

  denotes the mean vector, 

and   denotes the covariance matrix. 

 

The Simulation Approach for 

Conditional VaR using Copula  

 

Since the determination of the 

joint probability distribution function 

is practically problematic, the 

estimation of the VaR can be 

alternatively evaluated by the copula 

joint distribution function (copula cdf) 

and the joint density function (copula 

pdf) as substitute functions. 

Therefore, the conditional VaR can be 

evaluated based on the pseudo-

random samples generated by the 

copula technique. 

While the joint distribution of 

assets’ returned in the portfolio can be 

described by the distribution function 

1 2( , , , )NF R R R  and the copular 

function, in the form of 

1 1( ( ), , ( ))N NC F R F R , the 

distribution of the portfolio’s return 

1 1p N NR w R w R    can then be 

reasonably described by the functions 

of ( )F   and ( )C  . 

Assuming that ( )p pf R is the pdf 

of the portfolio’s return pR , if pR  is 

randomly selected from a large 

number of random variables, applying 

the joint copula distribution function, 

the estimation of conditional VaR is 

then straightforward as follows: 

Step 1: Randomly select N

random variables ( )Z from a standard 

normal distribution in which each 

variable is also identically distributed. 

In addition, each variable also shares 

its relationship through the variance-

covariance matrix § .  

With the "mvrnorm" function of 

Venables and Ripley (2002) in the R 

package “MASS” produced by the R 

CORE TEAM. (2020), it is 

straightforward to generate random 

samples from a multivariate normal 

distribution where the customizable 

variance-covariance matrix (§ ) can be 

smoothly fitted to the observed data. 

Step 2: Calculate the vector of 

cumulative probability ( )u  based on 

the random sample Z  with the 

function "pnorm" of Venables and 

Ripley (2002) in the R package, where 

the transformation does not alter the 

variance-covariance structure among 

the random variables. It was 

consequently found that each 

distribution of the new random 

variables contained in u  was 

uniformly distributed in the  0,1  

interval. 
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Step 3: It was found that the 

natural financial data have heavier 

tails than in an observed normal 

distribution. Therefore, the tail 

behaviour of each copula such as the 

Student-t copula which is similar to 

the Gaussian distribution but has 

positive tail dependence should be 

applied (Daniel, 2016). However, 

another parameter, the degrees of 

freedom ( ) must also be estimated. 

As the value of   increases, the 

Student-t distribution becomes closer 

to the Gaussian distribution. The 

Gaussian copula, which is tail 

independent and also allows for 

negative dependence then becomes 

widely applied in many fields of 

finance and risk management. Li 

(2000) proposed that the 

transformation of random variables 

contained in u  to become the return of 

stock iR  can be performed through the 

Gaussian copula as follows: 

 
1 1

1 1( , , ; ) ( ( ), , ( ))N NC u u u u     

1 1

1 1( , , ; ) ( ( ), , ( ))N NC u u u u      

 

where  ( )i i iu F R   

 is a normal cumulative joint 

distribution function of a 

multivariate Gaussian distribution 

with a mean vector zero and n n  

correlation matrix  .  
1  is a probability density function 

whose values are inversed from a 

normal cumulative distribution.  

  is the correlation matrix between 

variable  1( )iR  and 
1( )jR . 

The return of each stock iR  in the 

large market capitalization portfolio, 

matched with the element of ( )iu  at 

the i th of ( )U , and can be express 

by: 
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i i i

i
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where ˆ
i  is the estimated location 

parameter of stock return i  where 

a logistic distribution is assumed. 
ˆ

i  is the estimated scale parameter of 

stock return i  where a logistic 

distribution is assumed. 

 

Since the quantile function of the 

Student’s t-distribution is an 

intractable case, the return of each 

stock iR  for the small market 

capitalization portfolio which is 

matched with the element of ( )iu  at 

the i th of ( )U  will be solved by the 

“qt” function of the R core team 

(2020) in the R programming 

language. 

Step 4: Calculate the portfolio’s 

return ( pR ) based on the weighted 

average of all individual expected 

returns held in the portfolio. Each 

stock return ( iR ) generated from Step 

3 was weighted with the respective 

investment portion. In this paper, it 

was assumed that the weight ( iw ) 

given to each stock return ( iR ) was 

equally distributed ( 0.25iw  ), resul-

ting with the portfolio return ( pR ). 
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Step 5: Recalculate a portfolio 

return ( pR ) based on Step 1 to Step 4 

M number of times. In this paper, the 

portfolio return was calculated with 

M = 50,000. Therefore, there are 

50,000 values of the portfolio’s return 

( pR ). 

Step 6: Sort the 50,000 values of 

the portfolio returns ( pR ) in 

ascending order. The portfolio’s VaR 

is then gathered by multiplying the 

portfolio’s return ( pR ) by -1, where it 

is located at the c 100 quantiles.  

Step 7: In order to estimate the 

complementary measure, conditional 

VaR or expected tail loss (ETL) is 

another risk indicator widely used for 

risk management. The conditional 

VaR provides a reasonable property of 

coherent risk measures in any 

conditions of the joint distribution. 

Artzner et al. (1997) proposed that the 

VaR is considered a good indicator of 

the risk level in terms of coherent risk 

measures only when the distribution 

of an asset’s returns is classified as an 

elliptical family. However, the 

distributions of the portfolio’s return (

pR ) which comprised of the four 

largest market capitalization stocks 

and the four smallest market 

capitalization stocks in the hospitality 

and tourism sector were empirically 

examined according to the logistic and 

Student’s t distributions which are not 

classified as part of the elliptical 

family. Therefore, the VaR with a 

non-elliptical distribution is not 

sufficient as a risk indicator. Artzner 

et al. (1999) examined the desirable 

properties of VaR, noting that it 

increases as a ratio of the investment 

amount (positive homogeneity). In 

addition, investing in risk-free assets 

reduces the value of VaR to the true 

value (transitional invariance). 

Implementing the diversification 

strategy may therefore increase the 

value of VaR rather than decreasing it 

(sub-additivity).  

Since the VaR only gives weight 

to the interested quantile and ignores 

the weight given to the lower quantile, 

the VaR has many desirable properties 

except its sub-additivity. 

Accordingly, the conditional VaR, 

which provides the same weight to all 

data exceeds the interested quantile, 

and is a useful supplementary measure 

for risk indication, where the 

conditional VaR at c  confidence level 

can be defined as:    

 

|p p cConditional VaR E R R VaR       

 

Once the value of the portfolio’s 

return ( pR ) has been obtained in 

ascending order from Step 6, the 

conditional VaR can be calculated by 

multiplying the average portfolio 

return, pR (which is losses exceeding 

the negative VaR) by -1. 

In order to compare the 

performance of the VaR and 

conditional VaR based on the 

Gaussian copula, where the 

probability distribution of the large 

market capitalization portfolio’s 

return (
L

pR ) is characterized by the 

logistic       distribution       and       the 

probability distribution of the small 

market capitalization portfolio’s 
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return (
S

pR ) is characterized by the 

Student’s t-distribution, the VaR and 

conditional VaR were also computed 

under the conventional assumption 

that the portfolio’s return follows a 

multivariate normal distribution as 

shown in Table 3 and Table 4. 

As shown in Table 3 and Table 4, 

the results imply that the application 

of the VaR and conditional VaR based 

on the Gaussian copula for the large 

and small market capitalization stock 

portfolios in hospitality and tourism 

consistently lie in the same direction, 

where the conditional VaR based on 

the Gaussian copula is slightly higher 

than the normality conditional VaR, 

normality VaR, and Gaussian copula 

VaR for all given levels of confidence 

respectively. However, the small 

market capitalization portfolio 

provides slightly higher values of VaR 

and CVaR in comparison to the large 

market capitalization portfolio for all 

assumptions of VaR. It can be 

suggested that the small market 

capitalization portfolio in hospitality 

and tourism empirically has a larger 

chance of declining in asset value than 

the large market capitalization 

portfolio. 

Even though, safe investments 

rarely significantly exceed the VaR, 

the application of CVaR in terms of 

risk exposure is considered safer than 

usual. Therefore, it can be implied that 

the conditional VaR based on the 

Gaussian copula is preferably 

applicable for a conservative portfolio 

investment where investors prioritize 

the preservation of capital by 

investing in lower-risk securities such 

as money market securities, blue-chip 

Table 3: Risk comparison of the portfolio of the four largest market 

capitalization stocks in the hospitality and tourism industry based on various 

assumptions of VaR  

Confidence 

Level 

Normality Gaussian Copula 

VaR Conditional VaR VaR Conditional VaR 

99.0 % 1.2969% 1.3313% 1.2037% 1.5352% 

97.5 % 1.1764% 1.1971% 0.9397% 1.2398% 

95.0 % 0.9319% 0.9566% 0.8528% 0.9869% 

 

Table 4: Risk comparison of the portfolio of the four smallest market 

capitalization stocks in the hospitality and tourism industry based on various 

assumptions of VaR  

Confidence 

Level 

Normality Gaussian Copula 

VaR Conditional VaR VaR Conditional VaR 

99.0 % 1.9319% 2.1135% 1.7731% 2.4625% 

97.5 % 1.5443% 1.7642% 1.2986% 1.9863% 

95.0 % 1.1672% 1.2893% 0.9354% 1.5396% 
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stock, and fixed income securities. 

Such investors will prefer to use the 

conditional VaR based on a Gaussian 

copula as a measurement of risk. 

Generally, investors are looking for a 

small CVaR. However, a large CVaR 

is also often found from investments 

with the most upside potential. 

Nevertheless, managing portfolio 

investment based on a conservative 

level does not imply the best 

performance of portfolio 

management. On the other hand, 

better portfolio management requires 

an estimated value of VaR which 

provides the closest level to the true 

value which is directly estimated from 

the actual probability distribution of 

the portfolio’s return ( pR ). Due to its 

popularity and conceptual simplicity, 

the conditional VaR and VaR are still 

useful tools in providing a means of 

assessing how much risk exposure 

investors are taking in order to 

achieve their portfolio returns. 

 

CONCLUSION 

 

The research described in this 

article found that the portfolio 

returns for the four largest and the 

four smallest market capitalization 

stocks in the tourism and hospitality 

sector are respectively 

characterized by the logistic and 

Student’s t distributions. Therefore, 

measuring values of VaR and 

conditional VaR for the portfolios 

with a multivariate normal 

distribution assumption on the 

portfolio returns may provide an 

undesirable  value of  risk level due to 

estimated errors which may arise. 

 With     a     dynamic     tool     in 

modelling multivariate distribution 

regardless of the assumption of joint 

normality distribution, the VaR and 

conditional VaR based on the 

Gaussian copula, where the 

distributions of the portfolio’s returns 

are characterized by the logistic and 

Student’s t distribution can then be 

used as an alternative measure to 

mitigate the risk level of the 

portfolio’s return.  

The conditional VaR calculated 

from the copula method provides a 

slightly higher level of risk than the 

conditional VaR and VaR with the 

assumption of the multivariate normal 

distribution for all given levels of 

confidence. However, the copula VaR 

provides the lowest value of risk level, 

aligning with the work of Khanthavit 

(2007) which studied the copula VaR 

for measuring the risk level of the 

Thai bond portfolio. The use of the 

conditional VaR based on the 

Gaussian copula is therefore more 

reasonable for investors who 

conservatively manage their portfolio 

than using the conditional VaR and 

VaR with the assumption of a 

multivariate normal distribution. 

Although, the major goal of 

conservative investment is to protect 

the principal of the portfolio, 

managing the portfolio based on a 

conservative level does not 

completely imply positive 

performance of portfolio 

management. On, the other hand, an 

accurately estimated value of the 

conditional  VaR  or  VaR  where they 
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 are directly estimated from the actual 

probability distribution of portfolio 

returns ( pR ) provides a vital means of 

assessing better portfolio 

management. 

Since the hospitality and tourism 

sector is sensitively volatile to several 

surrounding factors, implementing a 

conservative investment strategy is 

more suitable for portfolio investment 

during the COVID-19 pandemic. 

With these constructive results, the 

conditional VaR based on the 

Gaussian copula reasonably 

contributes a great benefit to investors 

who are focussed mainly on principal 

protection and those who carry the 

greatest chance of preserving the 

purchasing power of their capital with 

the least amount of risk. 
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