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Abstract 

Purpose: This study aims to enhance vocational school students' satisfaction, learning engagement, and intention to use MOOCs 

in Hangzhou, China. Research design, data, and methodology: The quantitative method (N=550) was used to distribute 

questionnaires to first-year students and collect sample data. The validity and reliability of the questionnaire were tested by project-

objective consistency test and pilot test before delivery. Confirmatory factor analysis (CFA) and structural equation model (SEM) 

were used to analyze the data, verify the model's goodness of fit, the structure's validity, and research hypothesis testing. Results: 

The research results show that the Perceived Usefulness, Satisfaction, and Learning Engagement of conceptual models have a 

significant impact on Continuance interaction. Course material developers, course teachers, and senior managers of higher 

education institutions, when comprehensively evaluating the existing or upcoming MOOC platforms, should ensure that the human-

machine interaction, human-machine system interaction, human-machine message interaction, and flow experience attributes are 

reasonable and practical and that students can indeed improve the efficiency of learning using the system. To further enhance 

students' satisfaction in using MOOCs and further Continuance Intention to Use MOOCs learning. Conclusions: MOOC platform 

managers should explicitly link the use of the platform to learner activities and positive learning outcomes.  
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1. Introduction 
 

In 2008, the term MOOC emerged to describe courses 

accessible through online platforms. Since then, MOOCs 

have grown in popularity among students and educators. The 

low cost of education is considered an intermediary benefit 

achieved through online instruction. Massive open online 

courses (MOOCs) have enabled many worldwide to study 

and learn without geographical or time limitations 

(Sementelli & Garrett, 2015). These courses are designed for 

individuals who want to improve their professional skills or 

expand their knowledge (Spector, 2014). Many online 

courses typically last about four to six weeks, depending on 

the content, and can be completed using a learner's terminal 

device. The implementation and design of teaching materials 

are based on a simultaneous learning process involving top 

professors from some of the world’s most prominent 

universities. The most important aspect of MOOCs is that 

they are completely free and open to the public (Joo et al., 

2018). Key features of MOOCs include interactive forums, 

course content, and quizzes, which allow users to check their 

learning outcomes. MOOCs are interactive platforms that 

facilitate interaction between educators and learners 

(Pappano, 2012). With the help of individualized learning 

platforms, online students can modify their plans based on 

their objectives.  

In China, the Education Ministry launched the country's 

first Massive Open Online Courses (MOOCs) in 2013. In 
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2015, the agency noted the need to improve the management 

and development of online learning platforms. It also 

proposed creating many new MOOCs to enhance their 

quality. The ministry aimed to produce high-quality 

education courses by 2020. The COVID-19 pandemic, which 

had a profound global impact in the spring of 2020, also 

significantly affected various sectors, including education in 

China. In response to the pandemic, many educational 

institutions in the country were suspended (UNESCO, 

2020a). 

In response, the Education Ministry of China directed 

educational institutions to implement online teaching 

programs. Jiangnan University utilizes online platforms to 

enable its learners to pursue independent education. The Law 

and Economics Department of Zhongnan University 

employed various online learning resources to provide high-

quality education. The university also used Multiple online 

platforms to maintain its teaching standards during the 

epidemic. Students at Nanjing University of 

Telecommunications must participate in designated class 

groups to ensure their academic progress during the 

pandemic. Tsinghua University urged its faculty members to 

deliver its spring 2020 theory courses online to provide the 

best possible education for its students. In addition to 

conducting online studies, many universities provided 

students with free information about Massive Open Online 

Courses (MOOCs). MOOCs differ from the online courses 

previously offered by universities during the pandemic. 

Students can choose whether or not to study on these 

platforms. Unlike mandatory online courses, MOOCs allow 

students to enroll at their discretion, while traditional online 

courses generally require participation according to the 

curriculum.  

 The evolution and rapid emergence of online learning 

have provided various educational institutions with new 

opportunities, including learning management systems and 

multiple online courses (UNESCO, 2020b). In China, 

numerous educational institutions and universities offer 

online learning programs using audio and video lectures. 

These programs can be delivered by teachers and are 

designed to meet the diverse needs of students (Hodges et al., 

2020). While some institutions and universities in China 

provide online programs through video-based methods, other 

platforms enable students to interact with instructors. 

This study investigates the issue of behavioral intention 

using Hangzhou, China, as a case study. In the internet era, 

it is crucial to encourage higher education institutions to use 

MOOCs in their teaching processes. Therefore, this research 

explores the factors that stimulate students' intention to 

continue using MOOCs for learning. University 

administrators can benefit from this study by developing 

course content and teaching processes that meet students' 

needs, promoting their intention to use MOOC systems for 

learning. The findings can provide valuable insights and 

strategic support for higher education institutions and 

learning management system course developers who aim to 

expand into the online education field or seek to transform 

traditional courses into blended learning models. 

 

 

2. Literature Review 

 
2.1 Human-Human Interaction  
                                                                                                                                                                                                                                                                                                                        

Through human-to-human interactions, students and 

teachers can enhance their communication and deepen their 

learning by leveraging the various features of an e-learning 

platform (Chen et al., 2017). The interactions between 

students and teachers are regarded as the most important 

factors affecting the outcome of a learning session. Eom et 

al. (2006) revealed that the interaction between educators 

and students can significantly impact satisfaction among 

online learners. You (2015) found that interactions between 

students and teachers reinforce learning tasks' social and 

emotional security and help students share relevant 

information. A study on students revealed that those who had 

favorable peer interactions performed better in their studies 

(Omar et al., 2015). The study also found that interactions 

between students and teachers are crucial factors influencing 

the satisfaction of online students. Besides the delivery of 

textbooks, interactions between students and teachers play a 

vital role in e-learning environments (Islam & Azad, 2015; 

Lam et al., 2014). 

According to Badia et al. (2014), educators' teaching 

styles vary in e-learning environments. Different approaches 

can help improve the quality of teaching and assist students 

in completing their assignments (Lin et al., 2017). In e-

learning research, student-teacher interactions are important 

factors contributing to user satisfaction. Based on the 

findings of previous studies, this paper develops the 

following hypothesis: 

H1: Human-human interaction has a significant impact on 

satisfaction. 

 
2.2 Human-System Interaction  
                                                                                                                                                                                                                                                                                                                      

Massive open online courses (MOOCs) enable learners 

to engage with the system through various features, 

including text, images, and multimedia capabilities (Chen et 

al., 2017). Harris et al. (2016) state that human-system 

interaction within e-learning environments can significantly 

affect user satisfaction. The concept of interactivity pertains 

to how participants communicate their needs and desires. 

Hsu et al. (2015) studied users' willingness to use social 

media in e-learning environments. They found that the 
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ability to express ideas and views through various forms of 

media greatly contributes to user satisfaction. Interactivity 

plays a crucial role in shaping satisfaction. DeLone and 

McLean (2003) updated the success model to explain various 

behaviors after adopting an information system. The success 

of a system can be evaluated based on factors such as service 

quality, information quality and quantity, and the likelihood 

of its use. These factors influence both user satisfaction and 

the probability of continued system use. 

The study identified that the availability of resources and 

the ability to share views and ideas are key factors 

influencing students' willingness to use social media. The 

interactions between students and the system significantly 

impact their satisfaction (Hsu et al., 2015). The updated 

success model for information systems can explain various 

behaviors following adopting new technology (DeLone & 

McLean, 2003). This model evaluates an information 

system's efficacy by considering the quality of its output, 

service, and information, affecting user satisfaction and 

system usage frequency. Based on the findings of previous 

studies, this paper develops the following hypothesis: 

H2: Human-system interaction has a significant impact on 

satisfaction.  

 

2.3 Human-Message Interaction  
 

The level of human interaction with the system should 

also be considered to ensure users can easily access and study 

the course content (Chen et al., 2017). According to 

Hollender et al. (2010), interactions between people and 

information are core factors influencing the success of an 

information system. Researchers can leverage the various 

functions of information systems to expand their 

understanding of cognition (Harder et al., 2016), which can 

affect user satisfaction. Bharatia and Chaudhury (2004) 

found that the quality of the information and the 

information's quality are critical factors influencing user 

satisfaction with an information system. Saeed and 

Abdinnour-Helm (2008) noted that a high-quality 

information system can benefit users by enabling them to 

make more informed decisions. They emphasized that the 

quality of transmitted information affects users' satisfaction 

and perception of value. 

Shyu and Chou (2008) suggested that effective learning 

design is essential for organizing online course content. 

Through e-learning platforms, students can easily browse 

course materials, explore platform features, and create 

learning materials (Harder et al., 2016; Materia et al., 2016). 

The quality of the information and user interactions 

influence users' willingness to return to and satisfaction with 

the e-learning platform (Ranganathan & Ganapathy, 2002). 

It is theorized that the quality of information presented in 

online courses affects students' satisfaction. Well-organized 

course materials can enhance students' enjoyment of learning 

activities and group discussions within an e-learning setting 

(Badia et al., 2014). Based on the findings of previous studies, 

this paper develops the following hypothesis: 

H3: Human-message interaction has a significant impact on 

satisfaction.  

 

2.4 Flow Experience  
 

Developing a strong emotional attachment to a particular 

activity can be driven by flow experiences (Chang & Zhu, 

2012; Liu et al., 2009). Studies have shown that the 

satisfaction of online students is influenced by the type of 

learning environment they are in, including the accessible 

content and the group discussions they participate in (Rose 

et al., 2012). The flow experience provided by Massive Open 

Online Courses (MOOCs) can significantly determine the 

level of satisfaction learners experience. 

Rossin et al. (2009) conducted a study on 45 MBA 

students and found that the data flow during a course affected 

their learning outcomes, enhancing their perceptual 

knowledge and overall satisfaction. Similarly, a study 

involving 462 South Korean online learners revealed that the 

flow experience significantly impacted their satisfaction 

with the course (Joo et al., 2013). Cheng (2014) conducted a 

related study with 378 nurses from Taiwan and found that the 

flow of experiences could positively or negatively impact 

participants' satisfaction. 

Other factors, such as motivation levels and the flow of 

information, also affect user satisfaction with e-learning 

platforms (Alraimi et al., 2015). MOOCs can stimulate a 

learner's flow experience, improving overall satisfaction and 

developing perceptual skills and knowledge mastery. Based 

on the findings of previous studies, this paper develops the 

following hypothesis: 

H4: Flow experience has a significant impact on satisfaction. 

 

2.5 Learning Engagement 

Wegmann and Thompson (2014) define interpersonal 

communication as the quality of participation in learning 

activities that involve interactions with other people. 

Through an e-learning platform, individuals can engage and 

search for the information they require, with immersion in 

the process enhancing their satisfaction (Leong, 2011). 

Various factors, such as the design, quality of content, and 

the overall experience, can enhance the immersion students 

feel while using an e-learning platform. One positive effect 

of immersion is increased satisfaction among students (Goel 

et al., 2013). Studies have shown that more engaging e-

learning platforms are more likely to be used over time. 

   A study revealed that users' trust in a blog system is 

related to their desire to continue using it (Shiau & Luo, 
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2013). Medical professionals' willingness to use blogs may 

also be affected by their overall experience with them 

(Cheng, 2014). Based on the findings of previous studies, 

this paper develops the following hypotheses: 

H5: Learning engagement has a significant impact on 

satisfaction. 

H10: Learning engagement has a significant impact on 

continuance intention. 

2.6 Perceived Usefulness 

A method or program's perceived effectiveness is also 

considered when assessing its usefulness (Davis et al., 1989). 

A learner's satisfaction can be enhanced by the learning 

platform's ability to fulfill a particular role (Cheng, 2014). 

Studies have proven that the perceived value of e-learning 

systems can significantly impact users' satisfaction (Al-

Sabawy et al., 2011; Islam, 2013). In mobile commerce, 

research has shown that people are more likely to use a 

platform they perceive as useful when finding information 

about products they purchase. Users can interact with one 

another through online comments or live chat (Xue et al., 

2020). The perceived usefulness of mobile commerce 

applications can affect user engagement levels (McLean, 

2018). Individuals who believe e-learning is useful to use it 

(Cheng, 2012; Lwoga & Komba, 2015). The perceived value 

of MOOCs can influence platforms' willingness to continue 

offering educational content (Alraimi et al., 2015; Wu & 

Chen, 2017). The perceived worth of technology can also 

influence individual engagement. Based on the findings of 

previous studies, this paper develops the following 

hypotheses: 

H6: Perceived usefulness has a significant impact on 

satisfaction. 

H7: Perceived usefulness has a significant impact on 

learning engagement. 

H9: Perceived usefulness has a significant impact on 

continuance intention. 

 

2.7 Satisfaction  
 

Satisfaction is a psychological state that arises from 

cognitive evaluations of outcomes and expectations 

(Bhattacherjee, 2001). According to the confirmation theory, 

consumer satisfaction with a product or service has positive 

effects (Oliver, 1980). A satisfactory experience is crucial 

for determining whether individuals will continue using an 

electronic system (Horzum, 2015). Research has shown that 

satisfaction is closely linked to an individual's desire to 

continue using a system (Hsiao et al., 2016). Danaher and 

Rust (1996) found that higher customer satisfaction is 

associated with a greater likelihood of continued service use. 

This notion aligns with the adaptive expectation theory 

(Oliver & Winer, 1987), which predicts that individuals' 

preferences will remain unchanged even if the products or 

services they use change. Satisfaction is believed to impact 

the success of an information system significantly. Given the 

similarities in how people use and purchase services and 

goods, high satisfaction is considered a critical factor for the 

success of information systems (DeLone & McLean, 2003; 

Rai et al., 2002). 

One key factor influencing technology's future use is 

customer satisfaction with e-learning initiatives (Barbour, 

2010). Cronin et al. (2000) noted that the perceived value of 

an information system can also affect an individual's intent 

to continue using it. Researchers conducted a study to 

determine if satisfaction influences individuals' intent to 

continue using an information system. The study found that 

increasing satisfaction among students participating in 

Massive Open Online Courses (MOOCs) boosts their 

likelihood of continuing to use the technology. Based on the 

findings of previous studies, this paper develops the 

following hypothesis: 

H8: Satisfaction has a significant impact on continuance 

intention. 

 

2.8 Continuance Intention  

 

   The continuance intention refers to users' behavior 

of using a service after receiving it (Bhattacherjee, 

2001). An individual's behavioral intention is 

influenced by their perception that the specific item 

they are using is beneficial, which affects their readiness 

to continue a particular action (Ajzen, 1991). Chiu et al. 

(2007) describe continuance intention as a subjective feeling 

related to users' perceptions of using a learning network. On 

the other hand, continuance intention refers to the 

willingness to take action in a satisfactory context. It 

describes the level of commitment an individual has to 

continue using a technology (Amoroso & Chen, 2017). The 

behavior of individuals after acquiring new technology can 

be used to determine their intent to continue using that 

technology (Park, 2014). The concept of continuance 

intention can also be used to describe changes in engagement 

during ongoing learning, potentially influencing the decision 

to continue using the technology (Bansal et al., 2005). 

  

 

3. Research Methods and Materials 
 

3.1 Research Framework 

  
The researcher has developed a research model based on 

the Expectation-Confirmation Model (ECM), Uses and 

Gratification Theory (UGT), Technology Acceptance Model 
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(TAM), and the DeLone and McLean Information Systems 

Success Model (ISS). TAM explains the acceptance and 

adoption of Information Systems (IS) and analyzes user 

adoption factors. It provides a theoretical foundation for 

understanding external factors influencing user attitudes and 

intentions and is widely used to predict information 

technology usage. Drennan et al. (2005) noted that while 

TAM was created to study technology acceptance in business 

environments, it has since proven to be a versatile model 

applicable in educational settings. 

The research model incorporates insights from three 

theoretical frameworks. The first framework, proposed by 

Chen et al. (2017), examines how interactivity and openness 

impact university students' intention to continue using 

Massive Open Online Courses (MOOCs). The study found 

that satisfaction significantly directly impacts continuance 

intention, with human-information interaction being the 

most important factor influencing satisfaction. In contrast, 

perceived openness has a lesser effect on usage intention. 

The second framework, developed by Mulik et al. (2019), 

investigates the flow experience of MOOC users and its 

impact on their intention to continue using the platform. The 

results indicate that a positive flow experience significantly 

enhances user satisfaction and continuance intention. The 

third framework, proposed by Cheng (2022), explores 

factors affecting students' willingness to continue using 

MOOCs. It finds that interface design quality, teaching 

quality, collaboration quality, perceived usefulness, learning 

engagement, and expectation confirmation positively impact 

students' learning outcomes, satisfaction, and intention to 

continue using MOOCs.  

This study aims to identify key factors influencing 

satisfaction and learning engagement among vocational 

college students in Hangzhou, China, and to examine the 

causal relationships between these factors and their intention 

to continue using MOOCs, as outlined in the research 

conceptual framework. The research conceptual framework 

is proposed as follows: Figure 1. 
 

 
 

Figure 1: Research Conceptual Framework 

 

 

 

H1: Human-human interaction has a significant impact on 

satisfaction. 

H2: Human-system interaction has a significant impact on 

satisfaction.  

H3: Human-message interaction has a significant impact on 

satisfaction.  

H4: Flow experience has a significant impact on satisfaction. 

H5: Learning engagement has a significant impact on 

satisfaction. 

H6: Perceived usefulness has a significant impact on 

satisfaction. 

H7: Perceived usefulness has a significant impact on 

learning engagement. 

H8: Satisfaction has a significant impact on continuance 

intention. 

H9: Perceived usefulness has a significant impact on 

continuance intention. 

H10: Learning engagement has a significant impact on 

continuance intention. 

 

3.2 Research Methodology 

 
In this study, empirical analysis and quantitative methods 

were employed. First, sample data were collected from the 

target population using a questionnaire. Before large-scale 

data collection, the content validity and reliability of the 

questionnaire were verified through Item-Objective 

Congruence (IOC) tests (> 0.67) and a pilot test of Cronbach’s 

Alpha (>0.7). After ensuring reliability, electronic 

questionnaires were distributed to first-year students from 

four majors at Zhejiang Business College who had more than 

one year of experience with MOOCs. 

Two quantitative methods were used: Confirmatory 

Factor Analysis (CFA) and Structural Equation Modeling 

(SEM). The first step involved using SPSS and AMOS for 

CFA to examine convergent validity. The second step 

employed SEM to explore causal relationships between all 

constructs in the conceptual model and to test the significance 

of the influences and proposed hypotheses. 

 

3.3 Population and Sample Size 

 

This study's target population comprised first-year 

students from Zhejiang Business College with over a year of 

experience using MOOCs and proficiency in multiple 

MOOC platforms. This selection criteria ensured that 

participants were familiar with MOOCs and had substantial 

usage experience. According to Soper (2006), a priori sample 

size calculator for Structural Equation Modeling (SEM), the 

recommended minimum sample size is 444 for eight latent 

variables and 28 observed variables, with a probability level 

0.05. Consequently, 550 questionnaires were distributed, and 

valid responses were subsequently screened. 
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3.4 Sampling Technique 
 

The sample was selected using a multistage sampling 

technique, including judgment, stratified random, and 

convenience sampling. Initially, judgment sampling was used 

to choose first-year students from four majors at Zhejiang 

Business College. Subsequently, stratified random sampling 

determined the sample size for each department or stratum, as 

shown in Table 1. 

 
Table 1: Sample Units and Sample Size 

Majors Population Size Proportional sample size 

E-commerce students 776 183 

Culinary Arts students 480 113 

Finance students 306 72 

Art and Design students 765 182 

Total 2,327 550 

Source: Constructed by author 

 

 

4. Results and Discussion 

 
4.1 Demographic Information 
 

The demographic information collected from the 

respondents included their gender. Questionnaires were 

distributed to first-year students in four selected majors that 

frequently use MOOCs. Five hundred fifty questionnaires 

were distributed, ensuring a broad representation across these 

key academic areas. The respondent pool comprised 199 

males, accounting for 36.1 percent of the total, and 351 

females, making up 63.9 percent. This distribution reflects the 

gender balance within the selected majors and provides a 

robust basis for analyzing the usage and perceptions of 

MOOCs among students. The comprehensive data collection 

aimed to ensure that the study's findings would be 

representative of the broader student population engaging 

with MOOCs. The demographic profile is proposed as 

follows: Table 2. 

 
Table 2: Demographic Profile 

Demographic and Behavior Data 

(N=550) 
Frequency  Percentage  

Gender 

 

Male 199 36.1% 

Female  351 63.9% 

 

4.2 Confirmatory Factor Analysis (CFA) 
 

When assessing SEM models, the structure of the 

variables and factors influencing the continuous use of an 

information system is analyzed using the Confirmatory 

Factor Analysis (CFA) method (Lei & Wu, 2007). CFA has 

distinct advantages compared to other techniques, allowing 

for measuring reliability and validity between variables 

(Byrne, 2010). Convergent validity can be assessed through 

metrics such as Cronbach's Alpha, factor loading, and average 

variance extracted (Fornell & Larcker, 1981). 

A factor loading greater than 0.50 is considered significant 

(Hair et al., 1998). In this study, factor loadings for all 

individual items were greater than 0.50, with most being 

above 0.70, ranging from 0.526 to 0.839, as shown in Table 3. 

Researchers recommend using composite reliability (CR) 

values of 0.70 and above and average variance extracted 

(AVE) values greater than or equal to 0.4 (Fornell & Larcker, 

1981; Hair et al., 1998). Table 3 demonstrates that the CR 

values in this study were all above the threshold, ranging from 

0.774 to 0.859. The AVE values were also greater than 0.4, 

ranging from 0.507 to 0.671.
 

Table 3: Confirmatory Factor Analysis Result, Composite Reliability (CR) and Average Variance Extracted (AVE)  

Variables 
Source of Questionnaire 

(Measurement Indicator) 

No. of 

Item 

Cronbach's 

Alpha 
Factors Loading CR AVE 

Human-Human Interaction (HHI) Chen et al. (2018) 3 0.852 0.789-0.839 0.852 0.658 

Human-System Interaction (HSI) Chen et al. (2018) 3 0.837 0.770-0.814 0.837 0.632 

Human-Message Interaction (HMI) Chen et al. (2018) 3 0.859 0.795-0.831 0.859 0.671 

Flow Experience (FE) Cheng (2021) 5 0.832 0.526-0.794 0.835 0.507 

Continuance intention (CI) Chen et al. (2018) 3 0.839 0.781-0.822 0.840 0.637 

Satisfaction (SS) Chen et al. (2018) 3 0.770 0.671-0.790 0.774 0.535 

Perceived usefulness (PU) Cheng (2022) 4 0.816 0.691-0.769 0.818 0.529 

Learning engagement (LE) Cheng (2022) 4 0.806 0.626-0.781 0.809 0.516 

                                                                                                                        

The goodness of Fit indicators was measured and shown 

in Table 4, including indices such as CMIN/DF, GFI, NFI, 

RMSEA, and TLI, all within acceptable statistical values. 

 
Table 4: Goodness of Fit for Measurement Model 

Fit Index Acceptable Criteria Statistical Values  

CMIN/DF 

< 5.00 (Al-Mamary & 

Shamsuddin, 2015; Awang, 

2012;) 

1.674 

Fit Index Acceptable Criteria Statistical Values  

GFI ≥ 0.85 (Sica & Ghisi, 2007) 0.936 

AGFI ≥ 0.80 (Sica & Ghisi, 2007) 0.919 

NFI ≥ 0.80 (Wu & Wang, 2006) 0.922 

CFI ≥ 0.80 (Bentler, 1990) 0.967 

TLI ≥ 0.80 (Sharma et al., 2005) 0.961 

RMSEA < 0.08 (Pedroso et al., 2016) 0.035 

Model 

Summary 

 Acceptable  

Model Fit 
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Remark: CMIN/DF = The ratio of the chi-square value to degree of 

freedom, GFI = goodness-of-fit index, AGFI = adjusted goodness-of-fit 
index, NFI = normalized fit index, CFI = comparative fit index, TLI = 

Tucker Lewis index, and RMSEA = root mean square error of 

approximation 

 

Discriminant validity was found to be satisfactory, as 

presented in Table 5, with significance determined by 

comparing the square root value of AVE to the correlation 

factor.  
 

Table 5: Discriminant Validity 
 HHI HIS HMI FE CI SS PU LE 

HHI 0.811        

HSI 0.406  0.795       

HMI 0.146  0.110 0.819      

FE 0.359  0.382 0.111 0.712     

CI 0.131  0.213 0.198 0.187 0.798    

SS 0.414 0.496 0.211 0.485 0.309 0.731   

PU 0.294  0.211 0.149 0.199 0.285 0.305 0.727  

LE 0.149  0.205 0.132 0.130 0.210 0.260 0.204 0.718 

Note: The diagonally listed value is the AVE square roots of the variables 

Source: Created by the author. 

 

4.3 Structural Equation Model (SEM)   
 

In Wanichbancha's (2014) article, the author defines the 

Structural Equation Model (SEM) method as a multivariate 

analysis technique. This method can study the relationships 

among latent and observed variables. SEM can test the causal 

relationships between discrete or continuous variables 

(Ullman & Bentler, 2013). SEM is not a descriptive but a 

confirmatory method for testing theoretical models (Hossain 

et al., 2021). Hair et al. (2006) pointed out that SEM is a 

powerful statistical technique. While general statistical 

techniques can only analyze the relationship within a single 

structure, SEM can simultaneously test the relationships 

between different variables. Due to its flexibility and 

versatility, SEM is commonly used in various scientific 

research fields (Lei & Wu, 2007). 

Table 6 measures and demonstrates the goodness of fit 

for the structural model. The statistical values are CMIN/DF 

= 2.554, GFI = 0.892, AGFI = 0.871, NFI=0.860, CFI = 

0.919, TLI = 0.910, and RMSEA = 0.053. All fit indices 

values were greater than the acceptable values, confirming 

the model's fitness.  

 

Table 6: Goodness of Fit for Structural Model 

Fit Index Acceptable Criteria 
Statistical 

Values 

CMIN/ 

DF 

< 5.00 (Al-Mamary & Shamsuddin, 

2015; Awang, 2012;) 
2.554 

Fit Index Acceptable Criteria 
Statistical 

Values 

GFI ≥ 0.85 (Sica & Ghisi, 2007) 0.892 

AGFI ≥ 0.80 (Sica & Ghisi, 2007) 0.871 

NFI ≥ 0.80 (Wu & Wang, 2006) 0.860 

CFI ≥ 0.80 (Bentler, 1990) 0.919 

TLI ≥ 0.80 (Sharma et al., 2005) 0.910 

RMSEA < 0.08 (Pedroso et al., 2016) 0.053 

Model 

Summary 

 Acceptable 

Model Fit 

Remark: CMIN/DF = The ratio of the chi-square value to degree of 

freedom, GFI = goodness-of-fit index, AGFI = adjusted goodness-of-fit 

index, NFI = normalized fit index, CFI = comparative fit index, TLI = 
Tucker Lewis index, and RMSEA = root mean square error of 

approximation 

 

4.4 Research Hypothesis Testing Result 
 

As suggested in the hypothesis, the strength of the 

correlation between the dependent and independent variables 

is measured using standardized path coefficients or 

regression coefficients. 

      
Table 7: Hypothesis Results of the Structural Equation Modeling 

Hypothesis (β) t-value Result 

H1: HHI→SS 0.205 4.318* Supported 

H2: HSI→SS 0.373 7.399* Supported 

H3: HMI→SS 0.140 3.002* Supported 

H4: FE→SS 0.405 7.993* Supported 

H5: LE→SS 0.155 3.060* Supported 

H6: PU→SS 0.169 3.362* Supported 

H7: PU→LE 0.252 4.679* Supported 

H8: SS→CI 0.251 4.575* Supported 

H9: PU→CI 0.203 3.839* Supported 

H10: LE→CI 0.114 2.187* Supported 

Note: * p<0.05 

Source: Created by the author  
 

The strongest impact on Satisfaction is the Flow 

experience. The path relationship between Satisfaction and 

Flow experience has a standardized path coefficient of 0.405 

and a t-value of 7.993 in H4. This supports the previous 

studies of Cao et al. (2005), Harris and Goode (2004), Lao 

and Pupat (2020), and Lee (2010). Flow experience 

regarding reliance, response capability, and individualization 

is another vital attribute of MOOCs' Satisfaction. 

Human-system interaction significantly impacts 

Satisfaction with a standardized path coefficient of 0.373 and 

a t-a value of 7.399 in H2. Human-system interactions such 

as accessibility, timeliness, accuracy, and relevance can 

influence the degree of MOOC satisfaction by students Al-

Omairi et al. (2021), Lin (2007), and Perkowitz and Etzioni 

(1999). 

Another significant factor impacting perceived 

Usefulness is learning engagement with a standardized path 

coefficient of 0.252 and a t-value of 4.679 in H7. So, the 
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features of LMS, such as controllability and flexibility, are 

important for students to consider and accept the system as a 

useful tool Kim et al. (2008), Rui-Hsin and Lin (2018). 

Satisfaction was mainly contributed by continuance 

intention. The direct impact of Satisfaction on continuance 

intention is significant at a standardized path coefficient of 

0.251 and t-value of 4.575 in H8, which is supported by the 

studies of Arteaga Sanchez et al. (2013) and Camarero et al. 

(2012). These studies show that students perceive the more 

useful MOOCs, the more likely they are to be of positive 

interest in learning with MOOCs.  

Human-human interaction also significantly impacts 

Satisfaction with using the MOOCs service, with a 

standardized path coefficient of 0.205 and a t-value of 4.318 

in H1. When students believe in the MOOCs service's 

reliability and independence, they are likely to have a 

positive impression or attitude toward using the system 

(Agag & El-Masry, 2016; Chawla & Joshi, 2019; Kim & 

Tadisina, 2007). 

Perceived Usefulness has a significant direct impact on 

continuance intention to use, with a standardized path 

coefficient of 0.203 and a t-value of 3.839 in H9. This is 

consistent with the studies of Benjangjaru and Vongurai 

(2018), Bhattacherjee (2000), and Perry (2017). The 

Usefulness of the system to the extent that it enhances the 

performance of their learning is the strongest determinant of 

intention to use or participate in MOOCs. 

Perceived Usefulness has a significant direct impact on 

Satisfaction with use, with a standardized path coefficient of 

0.169 and a t-value of 3.362 in H6. The finding was 

consistent with Jaiyeoba and Iloanya (2019), Lau and Woods 

(2008), and Lee (2009). Hence, students are likely or intent 

to use MOOCs when they have a positive or favorable 

impression of them. 

Learning engagement has a significant direct impact on 

Satisfaction with use, with a standardized path coefficient of 

0.155 and a t-value of 3.060 in H5. This finding is consistent 

with previous studies by Gefen and Heart (2006), Lee et al. 

(2015), and Tarhini et al. (2017). They claim that when 

students are more engaged in learning during the relearning 

process, they will be Satisfied and use MOOCs to learn. 

Human-message interaction significantly impacts 

Satisfaction with a standardized path coefficient of 0.140 and 

a t-value of 3.002 in H3. This is consistent with studies by 

Benjangjaru and Vongurai (2018), Bhattacherjee (2000), Lin 

(2003), and Perry (2017). The quality of human interaction 

was known to increase people's Satisfaction with learning. 

This was the most important factor that prompted them to 

participate in or use Massive Open Online Courses. 

Learning engagement has a significant direct impact on 

continuance intention to use, with a standardized path 

coefficient of 0.114 and a t-value of 2.187 in H10. This is 

supported by the studies of Arteaga Sanchez et al. (2013) and 

Camarero et al. (2012). Students find that the more involved 

and active they are in learning, the stronger and more useful 

their Satisfaction will be. 

 

 

5. Conclusion and Recommendation 
 

5.1 Conclusion 
 

This study aims to comprehensively analyze the 

important factors that affect students' satisfaction, learning 

engagement, and continuance intention in Hangzhou, China, 

when using MOOCs for learning. The rapid emergence and 

evolution of the internet have greatly impacted various facets 

of our daily lives. Understanding the factors influencing 

students' satisfaction and engagement with Massive Open 

Online Courses (MOOCs) is crucial for effectively 

promoting learning. The researchers proposed ten 

hypotheses to investigate the direct or indirect impacts on the 

defined research questions. The survey targeted first-year 

students from four Zhejiang Business College majors with at 

least one year of experience using MOOCs. A total of 550 

questionnaires were distributed. After analyzing the 

collected data, the researchers used Confirmatory Factor 

Analysis (CFA) to measure and test the validity and 

reliability of the research conceptual model. Additionally, 

Structural Equation Modeling (SEM) was employed to 

analyze and discuss the factors influencing the continuance 

intention of students in vocational colleges to use MOOCs. 

All ten proposed hypotheses were supported, demonstrating 

the achievement of the research objectives. 

The researchers were able to summarize their findings, 

with all 10 proposed hypotheses being supported. This 

validation instills confidence in the research's conclusions, 

providing a solid foundation for understanding the factors 

influencing student satisfaction, learning engagement, and 

continuance intention with MOOCs in Hangzhou, China. 

First, the researchers found that satisfaction is the 

primary factor influencing a learner's decision to enroll in an 

online course. Horzum (2015) emphasized the importance of 

satisfaction in determining individuals' willingness to use 

information systems. Furthermore, the interactive nature of 

Massive Open Online Courses (MOOCs) significantly 

affects how satisfied students are with their learning 

experience. Therefore, enhancing system interaction is 

crucial for increasing learners' willingness to engage with 

MOOCs. 

Secondly, the study ranked the antecedents significantly 

impacting satisfaction according to Human-Human 

Interaction, Human-System Interaction, Human-Message 

Interaction, and Flow Experience. Providing high-quality 

interactive services makes users perceive the system as 

valuable and useful. Eom et al. (2006) observed that 
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increased interactions between students and teachers lead to 

higher user satisfaction. E-learning research has increasingly 

recognized the significance of these interactions. You (2015) 

stated that interactions between teachers and students 

enhance the social and emotional security of the learning 

process and provide relevant information for the students. 

 

5.2 Recommendation 

 
The researchers identified key factors influencing the use 

of Massive Open Online Courses (MOOCs) in four main 

subjects at Zhejiang Business College in Hangzhou. These 

factors include Human-Human Interaction (HHI), Human-

System Interaction (HSI), Human-Message Interaction 

(HMI), Flow Experience (FE), Continuance Intention (CI), 

Satisfaction (SS), Perceived Usefulness (PU), and Learning 

Engagement (LE). These factors should be developed and 

promoted to enhance the adoption of MOOCs in vocational 

schools. 

In this study, satisfaction was found to be the strongest 

predictor of continuance intention when using MOOCs. This 

underscores the importance of Satisfaction in determining 

whether users are willing to continue using the information 

system, making it likely they will continue to use MOOCs. 

Therefore, developers of curriculum materials, teachers, and 

senior managers of higher education institutions should 

ensure the availability of HHI, HSI, HMI, and Flow 

Experience when using MOOCs. The insights provided in 

this study can help MOOC platform designers and owners 

develop better promotion strategies. The results emphasize 

the importance of interactivity on the MOOC platform. 

Platform designers should seek to provide tools or features 

that maximize HSI and HHI. In this study, the effect of HMI 

was weak, suggesting that developers should optimize the 

logic for more effective interaction between users and 

information, facilitating users' access to learning-related 

materials. Providing these functions can enhance HMI. Flow 

experience is a key factor affecting satisfaction. MOOC 

platform managers should explicitly link the use of the 

platform to learner activities and positive learning outcomes. 

They should actively promote the platform through online 

word-of-mouth or existing online communities to increase 

the sense of flow experience. This can help learners engage 

more effectively with online courses, increasing their 

willingness to continue using MOOCs.Once interactive 

features are assured, the system's usefulness, operational 

processes, and other support facilities should be publicized 

to students through training or media communication to 

increase their awareness and acceptance. These measures can 

inspire a positive attitude and increase the likelihood of using 

MOOCs in the learning process. 

In conclusion, this study details the impact of MOOCs on 

vocational school students' satisfaction, learning engagement, 

and continuance intention. It allows MOOC curriculum 

developers and senior managers of higher education 

institutions to identify variables that affect satisfaction, 

learning engagement, and continuance intention. These 

variables can be applied to projects, investments, and 

optimizing the use of MOOCs. 

 

5.3 Limitation and Further Study 
 

The study's limitations have been acknowledged, and 

further research is recommended. Firstly, this study focuses 

solely on vocational school students, specifically selecting 

participants from four majors within Zhejiang Business 

College. The sample size and scope were limited, indicating 

further research needed to validate and expand upon the 

findings. Secondly, the questionnaire used for the study 

included self-report scales, which could introduce bias. 

Additionally, the model did not account for certain variables. 

Further studies are needed to analyze factors influencing 

a learner's use of online tools, such as reputation and 

satisfaction. Different types of online learning and study 

objectives can also yield varying results, making the model 

more general. Thirdly, the study was conducted exclusively 

on students. Including teachers could provide deeper insights 

into how their pupils perceive the effects of using online 

courses. As individuals become more familiar with online 

services, their perceptions of openness and interaction will 

likely evolve. Public perceptions of online learning can also 

change over time. Further research is needed to analyze the 

factors that affect college students' satisfaction and learning 

engagement using MOOCs. By addressing these limitations, 

future research can provide a more comprehensive 

understanding of the factors influencing the use and 

effectiveness of MOOCs in various educational contexts. 
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